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Abstract 

 

A rotary-draw tube bending process is modeled analytically.  The model is based on 

total deformation theory for the plastic bending calculations, and elastic theory of curved 

beams for the springback calculations.  The model is applied to simulate bending of 76.2 mm 

outside diameter DQAK steel tubes of 1.57 mm wall thickness.  Bends with Rc/d ratios (ratio 

of bend centerline-radius to tube outside diameter) of 2.5, 2.0 and 1.5 are considered.  

Supporting experiments are presented, considering the Rc/d = 2.5 and 2.0 bends, as well as 

numerical finite element (FE) simulations.  In general, agreement between the analytical 

model with the experimental and FE bend results is shown to be good. 

 

The analytical bend results are then used as input to secondary hydroforming FE 

simulations and compared with experiment.  In addition, FE bend results are also used as 

input into the same hydroforming simulations.  The agreement between the two different 

hydroforming simulations and experiment is also shown to be good. 
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Chapter 1 - Introduction 

1.1 Overview 

 

Pre-bending of tubes is often the first stage in the production of hydroformed structural 

members.  Although much research has been done on the hydroforming process itself, there has 

been considerably less effort dedicated to studying the effect of pre-bending operations on the 

subsequent hydroformability of tubular parts. 

 

Hydroforming is a process in which a hollow workpiece is expanded into a die under 

high internal water pressure.  Upon application of the internal pressure, the workpiece “balloons” 

out until it reaches a desired final shape.  Figure 1.1 shows an example of a hydroforming die, 

with a tubular sample in the as-bent and as-hydroformed conditions [1].  Figure 1.2 illustrates 

how the tube is hydroformed inside a die until it contacts the inside surface, thereby taking on the 

desired shape.  The ability of a workpiece, or material, to reach this desired final shape without 

failure is often referred to as its “hydroformability”. 
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Figure 1.1: (a) Half of hydroform die, and (b) tube cross-sections shown, before and after 
hydroforming 

 A 

 A

a 

b 

Pre-bent tube inserted

into die cavity 

Hydroformed tube Pre-bent tube 
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Figure 1.2: Section A-A showing full view of hydroforming-die cross-section, before and after 
hydroforming 

 

Typical applications of hydroformed parts in automotive structures are illustrated in 

Figure 1.3.  This figure shows a range of parts, all of which are pre-bent and then hydroformed in 

order to create their irregular shape. 

 

A
B

C

D E
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A
B

C
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F

 

Figure 1.3: Hydroformed parts in an automobile frame: A – Roof Header, B – Instrument Panel 
Support, C – Radiator Support, D – Engine Cradle, E – Roof Rail, F – Frame Rail 
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In order for a tube to fit inside a hydroforming die, it must often be bent at multiple 

locations (pre-bending).  The hydroforming then expands the diameter of the tube outward into 

the desired cross-sectional shape, which can be quite irregular, as shown in Figure 1.3. 

 

A major focus of this thesis is to examine the effect that pre-bending has on the 

hydroforming of a part.  By adjusting certain bending process variables (discussed in Section 

1.2), one can observe the effect these have on the subsequent hydroforming behaviour.  In 

particular, pre-bending operations partially consume the ductility of the workpiece, which can 

limit its subsequent hydroformability and lead to premature bursting failure before the desired 

final expansion is reached.  Ideally, one would set the pre-bend forming conditions such that pre-

form “damage” is minimized. 

 

By creating computational models it is possible to simulate the pre-bend and 

hydroforming processes and predict strains and thickness in parts.  This activity is important 

because such simulations can serve as a predictive means to evaluate the hydroformability of 

parts without resorting to expensive (trial and error) die fabrication and tryout time.  By adjusting 

process variables in the simulations one can, through iteration, reach an optimum combination of 

process variables that are best suited to form a particular part. 

 

The most common approach to simulating pre-bending and hydroforming is based on 

the finite element method (FEM).  Unfortunately, FEM models of pre-bending tend to be 

complex and expensive computationally.  The main focus of this thesis is the development of an 

analytical bend model that is much simpler than a detailed FEM bend model, but still retains 

good accuracy.  The motivation for creating such a bend model is that it runs much faster, 

computationally, than an equivalent FEM simulation and is much simpler to set up. 
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In this thesis, the validation of the bend model is performed in two ways, the first being 

comparison of strain and thickness predictions, after bending, to FEM and experimental results.  

In the second validation, the strain and thickness predictions from the analytical model are used 

to initialize a FEM model of a hydroforming operation.  The predicted strains and thickness after 

hydroforming are compared to experimental results to evaluate the accuracy of the modeling.  As 

well, the predictions from the analytical model are compared to hydroforming FE simulations 

using strain and thickness predictions from FE models of bending. 

 

Prior to presenting the models and results from this research, previous work on the 

analytical modeling of elastic-plastic tube bending will be discussed in detail.  As well, an 

overview of hydroforming will be presented to give a summary of this process and its breadth of 

application, including discussion of hydroforming of pre-bent tubes.   
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1.2 Plastic Bending of Straight Tubes 

 

The bending of metal is one of the most common metalworking processes in industry.  

In the past, the bending of tube was viewed as a skilled craft based on long experience.  

However, with the implementation of numerically-controlled bending equipment, such as rotary-

draw tube bending machines (illustrated in Figure 1.4), it has become important to study the 

basic mechanics involved in the bending process.  The stress and strain distributions developed 

in a tube during bending are important to predict the springback and structural properties of the 

tube in the as-bent condition. 

 

 

Figure 1.4: Half-symmetry view of rotary-draw tube bender 

 

It is evident that the principles of tube bending are similar to bending of a solid bar, 

except that internal support is normally needed.  In practice, this is provided by a mandrel 

positioned inside the tube during bending.  The mandrel can be rigid, or flexible (Figure 1.5). 
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a 

b 

Movable mandrel balls 

 

Figure 1.5: a) Rigid mandrel, b) Flexible mandrel 

 

Deciding on whether to use a rigid or flexible mandrel depends on factors such as the 

ratios of tube wall thickness to tube outside diameter (OD), and tube OD relative to centerline 

radius Rc of bend (shown in Figure 1.4).  Also, the number of mandrel balls to use on a flexible 

mandrel, as well as their spacing or pitch, depends on these factors as well.  For example, a 

thicker wall tube would require fewer mandrel balls than a thinner wall tube, since a thicker wall 

tube requires less internal support since it is less likely to collapse, or buckle, during bending. 

 

To bend a tube in a rotary-draw bender, it is first positioned inside the bender.  It is then 

locked in place by closing of the clamp die onto the bend die.  The role of the pressure die is 

two-fold.  First, it must exert sufficient pressure by pushing the tube against the wiper die to 

prevent wrinkling on the inside of the tube, and secondly it must control the axial movement of 

the back of the tube feeding into the bend.  The bend die and clamp die then rotate around as one 

piece, bending the tube around the bend die, with the pressure die maintaining pressure against 

the wiper, and moving along at a prescribed percent boost (or boost force).  This is continued 

until a desired bend angle θ is reached.  This process will be explained in greater detail in 

Chapter 2. 
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The percentage boost is the ratio of the linear velocity of the pressure die (Vpd in Figure 

1.4), to the instantaneous tangential velocity of the rotating bend die, at centerline radius Rc.  The 

tangential velocity of the bend die, at radius Rc, is equal to Rc⋅dθ/dt, at any time during the bend.  

This ratio is then converted to a percentage.  The level of pressure die boost controls the 

movement of the back of the tube feeding into the bend, which affects the thickness and strains 

generated in the tube during bending. 

 

1.2.1 Historical Work on Plastic Bending of Tubes 

 

One of the earliest works on plastic bending of tubes was in 1968, by Afendik [2], who 

investigated tube bending with small bend radii, where the change in cross-sectional shape is 

considerable.  He considered a rectilinear (straight) thin-walled tube, as being bent with a pure 

moment M applied to its ends.  The assumptions he makes are: the ratio of wall thickness t to the 

tube radius d/2 is such that 2t/d ≤ 0.2, and the ratio of tube radius d/2 to centerline bend radius Rc 

is such that 0.005 ≤ d/(2Rc) ≤ 0.1.  In solving the problem, it was also assumed that the cross-

sections remain plane in bending (while the tube material strain-hardens as plastic strains grow), 

and that the tube is allowed to ovalize meaning there is no internal mandrel support. 

 

The mathematical development of Afendik [2] is based on the cross-section shown in 

Figure 1.6.  The y coordinate for the position of a point on the centerline of the deformed cross-

section, with respect to the neutral axis is given by 

( )siny A r α α= +                                                                                                              (1.1) 

where A is the neutral axis shift below the centerline and r(α) is the radius as a function of the 

meridional coordinate α on the deformed cross-section. 

 



 

 9

 

 

 

 

 

 

 

 

 

Figure 1.6: Mid-surface geometry before and after deformation (ovalization) [2] 

 

On the basis of the original undeformed geometry this can be written as 

*( )sin coso r o oy A r u t uαα α= + + + +                                                                                     (1.2) 

from which the axial bending (engineering) strain becomes 

*

1
( )sin cosr o oA r u t uy

R R
αα αε + + + += =                                                                              (1.3) 

where ur = ur(αo) is the radial displacement on the original un-deformed geometry, uα = uα(αo) is 

the meridional (circumferential) displacement. t* is the distance, measured from the mid-

thickness circle along ro, in the un-deformed cross-section; t* >0 above this mid-circle and t* < 0 

below it, t* = t/2 on the OD and t* = -t/2 on the ID. t is the original wall thickness, and αo is the 

angle on the original un-deformed cross-section. 

 

The meridional engineering strain can be expressed as 

* 2

2 122 ( )r
r

o o

t d uu
r d

ε µε
α

= − + −      (1.4) 

As the plastic strain increases, the parameter µ = 0.5, and for true strain 

αo α

R

A 

r(α)ro 

yo 

xo

y

x 

Po 

Pt* 

t 

mid-circle
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1 2 3 0ε ε ε+ + =      (1.5) 

 

Note that the subscript 1 denotes the axial (θ) direction, 2 denotes the 

circumferential/hoop (α) direction, and 3 denotes the radial (r) direction. 

 

For true strain, the effective strain is expressed as 

2 2
1 1 2 2

2
3effε ε ε ε ε= + +    (1.6) 

 

With the thin shell assumption (σ3 = 0), one can write 

1 1 2

2 2 1

2 (2 )
3

2 (2 )
3

eff

eff

eff

eff

σ
σ ε ε

ε
σ

σ ε ε
ε

= +

= +
                                           (1.7) 

 

The effective stress can be expressed as 

2 2
1 1 2 2effσ σ σ σ σ= − +                                                                                                    (1.8) 

in which σ1 and σ2 are stresses in the axial and circumferential directions, respectively. 

 

For large plastic strains the strain hardening behaviour was assumed to follow a power 

law rule, 

n
eff effKσ ε=                                                                                                                       (1.9) 

 

This formulation proves to be a simple, but useful, representation of the underlying 

physics of tube bending. 
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Zhang and Yu [3], and Pan and Stelson [4] produced similar formulations to 

analytically describe the plastic deformation of a tube during bending, with Pan and Stelson [4] 

going into greater detail.  Their main assumptions were: tube cross-sections remain plane during 

bending, and the tube material is incompressible and elastic strains can be neglected during 

bending. 

 

Consider now, Figure 1.7 and 1.8, and the following mathematical development.  Note 

that the angle term ϕ is the change in tangential angle due to the deformation of the middle 

surface after bending.  For no deformation, ϕ = 0, by definition. 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 1.7: Geometry of deformed cross-section [4] 
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Figure 1.8: Bent tube showing coordinate system [4] 

 

Based on experimental observations, when using a mandrel, the displacement field 

(upon deformation) in the axial direction is approximated by [4] 

* *
1( , , ) cos ( / 2 )cos 2 cos ( / 2 )sin 3 cos ( / 2 )sinn n n

o b o b bw t r r tα ψ ξ πψ ψ α ζ πψ ψ α η πψ ψ α= + −  

    (1.10) 

where ro is the meridional radius of the tube mid-circle before deformation. ξ, ς, η are constant 

coefficients determined by the principle of minimum potential work. 

 

t is the tube wall thickness, before deformation, where 

-t/2 < t* < t/2, 0 < ψ < ψb , 0 ≤ α ≤ 2π 

 

At the two edges of the bending area where ψ  = ±ψb, one obtains (see Figure 1.8) 

cos ( / 2 ) 0n
bπψ ψ =                                                                                                         (1.11) 

x

ψ

y 

Symmetry line Fully developed 

bend condition 
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and at the middle of the bending area, ψ  = 0°, one obtains 

cos ( / 2 ) 1n
bπψ ψ =                                                                                                           (1.12) 

which agrees with experiment. 

 

From these equations, the distance from the center of un-deformed cross-section (see 

Figure 1.7), o and a point at deformed middle surface o′ is [4]: 

 

( , ) [1 cos ( / 2 )cos 2 cos ( / 2 )sin 3 ]n n
o b br rα ψ ξ πψ ψ α ζ πψ ψ α= + +                                (1.13) 

This distance is ro before the tube is bent. 

 

Referring to Figure 1.7, the axial strain field, for an arbitrary position x, can be 

determined as [4] 

* *
1 1[ sin( )] / sin( ) /o

c S cx t R t Rε α ϕ ε α ϕ= + + = + +                                                           (1.14) 

where 1
o
Sε  is the axial strain on the middle surface (mid-circle), and Rc is the bend radius of 

curvature of the centerline. 

Now, 

'

2 '2 1/ 2

sin cossin( )
( )

r r
r r

α

α

α αα ϕ ++ =
+

                                                                                          (1.15) 

 

The circumferential strain can be written as [4] 

*
* *

2 1*( , ) o
S

o

t dt t
r t ds

ϕε α ε⎛ ⎞= +⎜ ⎟+ ⎝ ⎠
                                                                                         (1.16) 

where 
2 2

2
2 2(1 ) 2o

S
d dr d rr r
ds d d
ϕ ε

α α
⎡ ⎤⎛ ⎞= + + −⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

                                                                          (1.17) 

where 2
o
Sε is the circumferential (hoop) strain on the middle surface. 
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By deformation theory the axial stress can be written as [3] 

1
1 1 2 1 2

2 (2 ) ( )
9 3(1 2 )

n
eff

EKσ ε ε ε ε ε
ν

−= − + +
−

                                                                   (1.18) 

and the hoop (circumferential) stress can be written as [3] 

1
2 2 1 1 2

2 (2 ) ( )
9 3(1 2 )

n
eff

EKσ ε ε ε ε ε
ν

−= − + +
−

                                                                   (1.19) 

where the material behavior, relating σeff and εeff, can be written as 

1eff y effσ σ σ ε= +   [4]       (1.20) 

n
eff effKσ ε=  [3] 

where σy is the yield stress of the material, σ1 is a strain hardening coefficient, and K is a 

strength coefficient. 

 

Furthermore, the rightmost term in the equations (1.18) and (1.19) can be neglected 

since the elastic part of the strain is negligible (for plastic deformation involving zero volume 

change, where ε1 + ε2 + ε3 ≅ 0) [4]. 

 

The results of this work are not quite adequate (within 25 % error for strains).  

However, considerable improvement in accuracy can be realized if axial boost force is taken into 

account as well as improved modeling of boundary condition effects between the tooling and the 

tube [4]. 

 

Zhang and Duncan [5] presented simplified models of the strain distribution in tube 

bending.  They make the following assumptions: the cross-section remains plane and circular 

during bending, the radius of the tube does not change, and the neutral axis is midway through 

the tube diameter, at the centerline location. 

 

To illustrate the mathematical development consider Figure 1.9. 
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Figure 1.9: Tube cross-section [5] 
 

The true axial strain in the mid-surface of the tube can be written as 

1
sinln(1 )o

c

r
R

αε = +                                                                                                         (1.21) 

 

With the assumption of zero circumferential strain 

3 1ε ε= −                                                                                                                          (1.22) 

 

Using a more accurate model 

1 ln(1 ) o
c

cy
R

ε ε= + +                                                                                                          (1.23) 

where c is the flattening coefficient and εo is the stretching strain at the centerline of the tube 

diameter.  This assumes the neutral axis is at the tube centerline and the shift towards the 

compressive side is due to a tensile (axial) membrane component εo. 

 

ro 

t

α
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If the ratio of the circumferential strain to the thickness strain is expressed as ra, similar 

to the anisotropy coefficient in sheet metals, the thickness and circumferential strain is calculated 

by 

3 1

2 1

1
1

1

a

a

a

r
r

r

ε ε

ε ε

= −
+

= −
+

                                                                                                                 (1.24) 

  

The effective strain is 

2 2 2
1 2 3

2 ( )
3effε ε ε ε= + +                                                                                                   (1.25) 

 

Since the circumferential strain is not neglected, the latter equations give a good 

approximation of the axial strain, as compared to experiment (Figure 1.10). 

 

Figure 1.10: Axial strain distribution as a function of position y [5] 
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This figure also reinforces the assumption that axial strain distribution varies linearly 

with linear distance from the neutral axis, over the cross-section. 

 

In 2000, Tang used deformation plasticity theory to investigate the plastic deformation 

in pipe and tube bending [6].  Now consider Figure 1.11, 

 

 

 

 2 2 22 ( )
3e a c tε ε ε ε= + +  

 

 

 

 

 

 

Figure 1.11: Geometry of cross-section [6] 
 

The relationship between longitudinal and circumferential stress is expressed as 

 

2 1
1 cos

2 1k
ασ σ −= −

+
                                                                                                          (1.26) 

 

where k = Rc/d. 

 

For the stress in the outer semi-circle, the longitudinal stress σ1 is tensile, and the 

circumferential stress σ2 is compressive.  For a thin wall, the radial stress σ3 can be neglected. 

 

Rc 

α

A
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By the maximum-shear-stress theory, the relation between the two stresses is given by 

1 2| | | | yσ σ σ+ =                                                                                                            (1.27) 

where σy is the yield strength of the tube material, assuming perfectly plastic flow. 

 

Substituting this expression for the longitudinal stress one obtains 

1
2 1

2 2 cosy
k

k
σ σ

α
+=

+ −
                                                                                                   (1.28) 

and the circumferential stress becomes 

2
1 cos

2 2 cosy k
ασ σ

α
−= −

+ −
                                                                                                (1.29)

  

Similarly, for the inner semi-circle, both σ2 and σ1 are compressive.  By the maximum-

shear-stress theory, the relation between them is given by 

1 2| | | | yσ σ σ− =                                                                                                               (1.30) 

 

Substituting this expression for the longitudinal stress one obtains 

1
2 1

2 cosy
k

k
σ σ

α
+= −

+
                                                                                                       (1.31) 

and the circumferential stress becomes 

2
1 cos

2 cosy k
ασ σ
α

−= −
+

                                                                                                       (1.32) 

 

The axial engineering strain can be written as 

1
cos cos

2c c

y r
R R k

α αε = = =                                                                                                (1.33) 

where r is an arbitrary radius.  The radial strain can be written as 
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1 2
3

1 2

cos
2 2k
σ σ αε
σ σ

− −= ⋅
−

                                                                                                      (1.34) 

Also, the circumferential strain can be written as 

2 1
2 1

1 2

2
2
σ σε ε
σ σ

−=
−

                                                                                                              (1.35) 

 

A crude approximation of the neutral axis deviation A is 

0.42rA
k

=                                                                                                                       (1.36) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.12: Bent tube showing developed region and decay sections [6] 

 

For pure bending the feed preparation length (tube stock length of original straight tube) 

for a bend is shorter than the geometric centroid axis arc length (see Figure 1.12). 

The length of the constant deviation sector is 

φd 

θ 

φd 

A

Rc 



 

 20

( )( 2 )c c dl R A θ φ= − −                                                                                                        (1.37) 

 

The length of the transitional sector is 

2
2t c d
Al R φ⎛ ⎞= −⎜ ⎟⎝ ⎠

                                                                                                              (1.38) 

 

Then the feed preparation length (tube stock length) of the whole bend is 

c tl l l= +                                                                                                                          (1.39) 

where φd is the angle of the transitional section and θ is the total bend angle, φd ≈ 30-35°. 

 

Al-Qureshi and Russo [7, 8] presented an elastic-plastic analysis of tube bending, as 

well as a formulation for residual stress distribution.  Their assumptions are: the cross-section 

has an axis of symmetry perpendicular to the plane of external forces, buckling and tearing are 

absent, the material has an elastic perfectly-plastic behaviour, and conditions are of plane strain. 

 

To start the development, consider the bending moment for an elastic-plastic regime 

2 2e e pM kEI EkY S= +                                                                                                    (1.40) 

where 

2

0

( )
ey

eI y B y dy= ∫                                                                                                             (1.41) 

/ 2

( )
e

d

p
y

S yB y dy= ∫                                                                                                            (1.42) 

 

k ≡ 1/R`c, and ye are the change in curvature (of the geometric centerline), and the 

distance to the elastic-plastic boundary from the neutral axis.  E is Young’s Modulus.  Consider 

Figure 1.13, which illustrates key parameters used in the analysis. 
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Figure 1.13: Geometry of tube [7] 
 

2 2 2( ) sin 2 ( / 2 ) ( / 2) cos , 0 / 2B d d t d for y d tα α α= − − − ≤ ≤ −                                    (1.43) 

( ) sin , / 2 / 2B d for d t y dα θ= − ≤ ≤  

where 

( / 2)cos
( / 2)sin

y d
dY d d

α
α α

=
= − ⋅

                                                                                                           (1.44) 

 

The elastic bending moment is 

o

My
I

σ =                                                                                                                                   (1.45) 

and 

'
1

'

o
co o o

c

yEI RI E I EIM
y y y R

σ ε
⎛ ⎞
⎜ ⎟⎝ ⎠= = = =                                                                                   (1.46) 

Now,  

'

1 1 1

c co cfR R R
= −                                                                                                                         (1.47) 

Note that when the material recovers elastically, the strain changes by a small amount 

t

dy 

α

d/2

y
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'
c co cf

y y y
R R R

ε = = −                                                                                                             (1.48) 

where Rco and Rcf are the initial and final centerline radius of the tube. 

 

The moment of inertia of the hollow circular section is given by 

4 4[( / 2) ( / 2 ) ]
4oI d d tπ= − −                                                                                                (1.49) 

 

The net residual stress distribution can be expressed as 

1 1
1 1res

co cf

yE
R R

σ σ
⎛ ⎞

= ± −⎜ ⎟⎜ ⎟⎝ ⎠
                                                                                                 (1.50) 

where σ1 is the stress before springback.  To give the correct distribution one must use the 

correct sign for σ1 and y.  Overall, good agreement is found between theoretical and 

experimental results, for residual stress distribution and stress-strain behaviour, over a range of 

tube materials tested [7]. 

 

1.2.2 Summary 

 

Previous analytical work on analytical modeling of tube bending is somewhat limited, 

in the sense that: 

 

• There is little work accounting for the membrane strain contribution due to axial boost 

forces, in say, rotary-draw bending.  This is an important consideration if one wishes to 

accurately capture the stress and strain distribution owing to the addition of axial force.   
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• The formulation of circumferential strain is very approximate and more analytical work 

can be done to better represent the circumferential strain development during the bending 

process. 

 

• Static equilibrium is not rigorously accounted for.  In reality, satisfying equilibrium 

would involve considering the shear stress acting on the tube, particularly the in-plane 

shear.  However, the shear stresses are quite small as compared to the hoop and axial 

stress.  Thus the stress formulations in the literature are satisfactory. 

 

Despite these limitations, the mathematical development in the literature does prove 

useful for giving a good physical understanding of the tube-bending problem, and how one can 

approach its solution from a mathematical point of view. 
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1.3 Hydroforming Overview 

 

Hydroforming of tubes has major advantages over conventional stamping, and joining 

of multiple parts.  The advantages are: cost and weight reduction, improved repeatability in 

dimensions after forming, better structural integrity, and increased strength and stiffness since 

the resulting cross-sections are closed. 

 

The forming principle involves the tube stock being placed within the internal cavity of 

a die, and then deformed by internal pressurization and, often, mechanical loading on tube ends, 

referred to as end feed.  Such end feed can be a useful means to minimize thinning of the 

workpiece during hydroforming by “feeding” extra material into the part. If the two load types 

(pressure and end feed) are used together, then a successful hydroforming operation requires 

optimization of the internal pressure and axial compression force at the tube ends.  Potential 

failure modes include bursting, wrinkling, and buckling. 

 

A variety of differently shaped parts can be hydroformed, some complex and others 

quite simple.  The following summarizes hydroforming research done on the most basic of 

shapes, such as tee-shaped and straight tubes.  These simplified parts are analyzed in depth, in 

the literature, to give a good understanding of the physics underlying the basic hydroforming 

process.  Such analysis includes material friction, and load scheduling (pressurization and end 

feed considerations). 

 

As relevant to this thesis, previous work done on pre-bending of tubes, prior to 

hydroforming, is also discussed, as a first stage of hydroforming.  The effect of bending on the 

subsequent hydroformability of tubes is described [9-14].  
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Finally, a technological review of the hydroforming process, from early years to most 

recent dates, as well as an overview of the fundamental principles, is discussed [15-17].   

1.3.1 Bulge Forming of Straight Tubes 

 

Considerable experimental, analytical and numerical work has been done on the bulge 

forming (free-expansion) of straight tubes, and their hydroformability (Figure 1.14).  In 

particular, different steel grades have been studied, by means of experiments, and compared to 

simple analytical and detailed FEM models [18, 19].  It has been shown that the anisotropic r-

value and strain hardening n-value, have significant impact on the shape of the free-expanded 

tube [18]. 

 

Dedicated analytical models [18, 20] also prove useful since they are able to predict 

trends observed in both experiment and FEM simulation with regard to variations in material 

parameters.  These models also help to explain shape transitions during free-expansion 

hydroforming of tubes. 

 

Chow and Yang [21] found formability during free expansion to be proportional to the 

strain hardening n-value and anisotropy parameter r, under axial plane stress loading.  If the ends 

of the tubes were fixed, however, the formability is observed to be independent of r.  Also, burst 

pressure increases with increasing anisotropy parameter r, for both free and fixed ends, but 

decreases with decreasing exponent n.  Furthermore, the formability of the tube is strongly 

dependent on the load path, demonstrating that the end feeding condition has a significant effect 

on the onset of bursting. 

 

Nefussi and Combescure [22] discuss the hydroforming limit of isotropic tubes 

subjected to internal pressure and independent axial (end feed) load.  By incorporating buckling 
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into the plastic instability analysis, a hydroforming-Swift criterion is developed which is a very 

good tool to study necking instability of tubes. 

 

 

 

Figure 1.14: Degree of expansion in bulge forming for different pressures [20] 

 

 

Also, of concern in bulge forming is the investigation of loading paths for axial end feed 

as a function of pressurization, over time.  There is an operating “window” in which one can 

form an ideal part, avoiding wrinkling due to excess end feed and avoiding excess thinning 

(leading to bursting) due to too little end feed.  Therefore an optimal range exists as shown in 

Figure 1.15 [25].  Such failure predictions and optimal operating “windows” are useful to 
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engineers and designers, even if based on simple models, as it allows one to make early process 

changing decisions. 

 

Xing and Makinouchi [23] investigated differences in forming limits based on plastic 

instability, for bulge forming, using analytical and numerical models.  They also focus on how to 

obtain optimum processing parameters through numerical analysis to meet the practical 

requirements.  Similar work has been carried out by Rimkus et al. [24], Xia [25], Tirosh et al. 

[26] and Koc and Altan [27].  Xia [25] shows that material anisotropy plays an important role in 

the failure development.  Tirosh et al. demonstrated that thicker tubes have less likelihood of 

buckling prematurely than a thinner tube. 

 

 

Figure 1.15: Chart showing operating window to avoid failure [25] 

 

Using both experimental and numerical methods, Koc [28] found that loading path and 

variation in material properties has a significant effect on the robustness of the tube 

hydroforming process, and final part specifications. 
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Asnafi and Skogsgardh [29] conduct experiments to show the error that may occur 

when theoretically obtained loading paths are used as input in the hydroforming equipment.  

They find that the precision of the hydroforming equipment plays a significant role.  Even if 

precision is as good as ±0.5% in internal pressure, there will be a discrepancy between 

experimental and predicted strains. 

 

Low pressurization and excess axial feeding can cause wrinkling failure (Figure 1.15).  

To assess numerical predictions of wrinkling behaviour, Kim et al. [30] apply static implicit and 

dynamic explicit FEM to predict wrinkling in straight tube bulge forming.  They report superior 

predictions using the explicit method, compared to implicit calculations. 

 

1.3.2 Tee-shape Forming  

 

Another useful hydroform experiment considers a “tee-shaped” part, as in plumbing 

fixtures (Figure 1.16).  The main objective in forming such a part is to get the desired protrusion 

height while avoiding excessive thinning.   

 

Koc et al. [31] present models to predict the limiting protrusion height of tee-shaped 

hydroformed parts, for various geometry, material properties, axial force, and friction conditions. 
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Figure 1.16: The hydroforming of a tee-shaped part [31] 

 

The effect of loading path and variation in material properties on the final configuration 

of the tee-shape has been studied numerically and experimentally [28].  Gelin and Labergere [32] 

use optimization strategies and sensitivity analysis to find the optimal process control in 

hydroforming of a tee-shape; the optimal process being that which minimizes thickness 

variations and gives the desired final part shape.  MacDonald and Hashmi [33] discuss the 

application of bulge forming to the manufacture of near-net-shape components and discusses 

machine and tool design, and illustrate how FEM is playing a growing role in the design of 

bulge-forming processes, for tee-shapes. 

 

A unique alternative to the use of pressurized fluid for hydroforming is examined by 

MacDonald and Hashmi [34].  They present a three-dimensional simulation of the manufacture 

of a tee-shape using a solid bulging medium (Figure 1.17). 
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Figure 1.17: Bulge forming using solid bulging medium [34] 

 

 

They concluded that the solid bulging medium allows for greater protrusion height, less 

thinning in the protrusion section, and lowers stresses overall. 
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1.3.3 Straight Tube Hydroforming into Rectangular Die 

 

There are two primary methods to form a tube in a die.  The first is to pre-crush the tube 

to allow an oversized tube to fit in the die, followed by hydroforming (Figure 1.18) [35] and 

1.19.  The other method requires an undersized tube that fits into the die and then that is 

expanded during hydroforming (Figure 1.20) [35].  Both methods will be discussed. 

 

 

 

Figure 1.18: Tube configuration in die: a) before crushing and pre-forming, b) after pre-forming 
and before crushing, and c) after crushing [35] 
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Figure 1.19: Tube configuration in die: a) before crushing, b) after crushing, and c) after 
hydroforming 

 

 

Figure 1.20: Tube configuration in die: a) before expansion, b) after expansion [35] 

a b

c
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Hwang and Altan [62] use the FEA method to explore the plastic flow pattern of a 

circular tube that is hydraulically expanded, or crushed into a rectangular cross-section and then 

expanded.  The loading path and the forming procedures during the crushing process are 

discussed [35].  Simulation results for thickness distributions, clamping forces, and forming 

pressures are compared between hydraulic expansion and crushing processes [35].  They found: 

 

• The maximum forming pressure needed by the crushing processes is only 5% of that 

required by hydraulic expansion processes; 

 

• The maximum crushing force needed in the crushing process is only about 7% of the 

clamping force (keeping two halves of die together) in the hydraulic expansion process; 

 

• The thickness distribution of the formed product obtained by the crushing processes is 

much more uniform than that by hydraulic expansion processes. 

 

Kridli et al. [36] used plane strain finite element analysis to study the effects of the 

strain-hardening exponent, initial tube wall thickness, and die corner radii on corner filling and 

thickness distribution of a straight hydroformed tube, inside a square die cavity.  It was 

concluded that the thickness distribution is a function of the die corner radius and strain-

hardening behaviour of the material.  A greater amount of variation is observed for lower n-

values.  Also, the variation in thickness distribution can be reduced if a larger die corner radius is 

used.  A tube material with a high strain-hardening exponent can be formed to a smaller die 

corner radius than a material with a low strain-hardening exponent, since it can achieve a higher 

amount of strain at a given stress (pressure) level. 

 

Chow and Yang [21] and Manabe and Amino [37] also used FEM to study straight tube 

hydroforming under a wide range of process conditions involving an enclosed square die with 

axial end feeding.  The failure analysis focuses on the onset of critical bursting conditions.   
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1.3.4 Lubricant and Friction Studies  

 

Lubrication is an important consideration in hydroforming and also one of the least 

understood from a modeling point of view.  Good lubrication conditions allow a tube to reach its 

final desired expansion and shape in the die, whereas poor lubrication often results in premature 

failure, due to excessive local thinning.  Therefore, it is important not only to accurately model 

friction effects in simulation, but also to accurately measure the coefficient of friction, under 

lubrication conditions that are representative of the actual operating conditions. 

 

Khodayari et al. [38] tested four different lubricants, and water, in straight tube corner 

fill hydroforming trials, expanded to burst.  They found that high burst pressure and axial 

displacement values are achieved with a low coefficient of friction. 

 

An alternative technique for measurement of friction; suitable for hydroforming and 

tube bending is the so-called twist compression test (TCT) [39].  This test considers large 

interface pressures and sliding distances. Vollertsen and Plancak [40] discuss an alternative 

approach for determining the coefficient of friction (COF) between die and workpiece.  This 

method is based on the upsetting of a tube and measuring the sliding friction. 

 

Oliveira et al [41] examined the effect of different lubricants on steel and aluminum 

tubes, bent on a rotary-draw tube bender.  The influence of the lubrication in terms of its effect 

on process variables, thickness and surface finish was studied.  They found that tool forces were 

most affected by the type of lubricant used while thickness was minimally affected.  Aluminum 

tubes proved to be quite sensitive to the choice of lubricant to avoid scratches on the inside 

surface, during bending. 
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1.3.5 Hydroforming of Pre-bent Tubes 

 

In hydroforming of complex-shaped parts, a workpiece must often be pre-formed to fit 

in a shaped die.  One such pre-form is the pre-bending of tubes, the focus of this thesis.  Clearly, 

the effect of the pre-forming operation on ductility can be significant in determining the 

formability of the final hydroformed part.  Therefore it can be quite important to adjust forming 

parameters in such pre-form operations to reduce any negative impact on hydroforming.  

Simulations can be very useful in studying this effect. 

 

Trana [9] focused on the development of a practical simulation procedure for the entire 

hydroforming process, and how a tube bending (pre-forming) operation influences the 

hydroforming result.  The simulation results were compared to the experimental results, for 

thickness, and the comparison proved to be good.  They found that use of a mandrel without 

balls results in necking upon hydroforming, whereas with mandrel balls no necking develops 

(Figure 1.21).  They also found significant mesh sensitivity in their models.  
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Figure 1.21: Necking tendencies during the hydroforming simulation of tubes bent with different 
mandrel geometries [9] 

 

 

Dwyer et al. [10] examined the variation of bending parameters, for aluminum tube, in 

such a way to reduce or minimize the loss in ductility, hence preserving formability for the 

subsequent hydroforming operations (Figure 1.22).  The figure shows a comparison in axial, 

hoop, and thickness strains between a numerical FEM model, for hydroforming, and experiment.  

The strain shift indicated is the change in hoop strain at 180º, after hydroforming, from the 

previous pre-bend value (before hydroforming). 

“necking”
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Figure 1.22: Strain after hydroforming around tube circumference – comparison of experimental 
and numerical results [10] 

 

Dyment et al. [12] examine the effect of percent boost on pre-bending and 

hydroforming strains and thickness values, for steel tubes.  They also discuss causes of 

premature failure during hydroforming, due to excessive localized thinning during the bending 

axial strain

hoop strain thickness strain 

Measuring Convention 
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process, as well as the potential adverse effect of strain path change. Their numerical bend 

models adequately capture experimental trends in strain and thickness distribution. 

 

Gholipour et al. [13] discuss the application of an in-house Gurson-based damage 

model in tube bending and hydroforming of aluminum tubes, using void nucleation and growth 

parameters determined for the aluminum material tested.  In general, good agreement was found 

between predicted results for strains and burst pressure, and experimental data. 

 

Pavlovskaia and Xia [14] developed a simplified analytical solution for the deformation 

of a tube cross-section when bending without a mandrel, to be used in place of a more 

computationally expensive FEM model.  Although an analytical investigation is conducted in 

their study, comparisons with numerical and experimental results have not been performed. 

 

Yang et al. [11] presented the simulation results on pre-bending and hydroforming 

processes that are used to form a tie bar, an automotive part.  The pre-bending is performed with 

an upper-lower bend die, and with a rotary-draw bending machine.  The tests are performed on 

48 mm OD tube with three different centerline bend radii of 55, 65, and 76 mm.  As it turns out 

the upper-lower bend die is a better pre-bend method then the rotary-draw tube bending machine, 

since the thickness reduction is smaller, resulting in a more uniform thickness distribution. 

 

1.3.6 Overview of Hydroforming 

 

A technological review of the hydroforming process, from its early years to recent dates 

is given by Koc and Altan [15], on various topics such as material, tribology, equipment, tooling, 

etc.  Dohmann and Hartl [16] provide an overview of the fundamental principles of 

hydroforming processes and their variants.  The more significant conclusions they make are that 
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hydroforming has moved into many different applications over the past decades [16].  The 

technology available to produce more complex shaped parts, with favorable strength, has 

developed to a great extent.   

 

Ahmetoglu and Altan [17] review the fundamentals of tube hydroforming technology 

and discuss how various parameters, such as tube material properties, pre-form geometry, 

lubrication and process control, affect product design and quality.  For example, the selection of 

a proper lubricant can be critical for a tube hydroforming process. 

 

Hydroforming can cost-effectively reduce the number of production steps, such as in 

the manufacture of frame components.  Computer modeling helps engineers develop reliable 

control strategies for hydroforming process parameters. 

 

1.4 Present Research 

 

As outlined in the previous discussion of the bending and hydroforming literature, pre-

bending of tubes is an important stage in the manufacture of hydroformed parts.  It is necessary 

to understand the influence of pre-bending on the secondary hydroforming operation in order to 

optimize formability and part quality.  Computational models are an effective means to study this 

forming process, as well as being very useful predictive tools that can save cost by removing a 

large degree of the trial and error in die-fabrication and try-out time. 

 

The work in this thesis focuses mainly on the development of an analytical model of 

rotary-draw tube bending, which serves to replace a much more time consuming FEM 

simulation, while still retaining a good degree of accuracy in its predictive capability.  By 

accounting for the effect of the pre-bend analytically one can then model the subsequent 
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hydroforming process, with FEM, using the analytically-generated bending strains, thickness and 

residual stresses.  A software program, coded in C, has been created to predict the post-bending 

strains, thickness and residual stresses without having to run a much more time-consuming FEM 

simulation.  The predictive capability of the analytical model is assessed against bending 

experiments and equivalent FEM models, for validation. 

 

This remainder of this thesis is organized as follows.  Chapter 2 describes the 

experimental procedure and the equipment used for the bending experiments performed in this 

study.  Chapter 3 provides a mathematical description of the analytical bend model, the 

derivations and equations used, as well as the physical explanations supporting the mathematical 

assumptions. Chapter 4 discusses the numerical FEM models, both of the bending and 

hydroforming processes, and their implementation.  Chapter 5 compares the analytical results to 

the detailed FEM models of bending along with experimental and numerical results for both 

bending and hydroforming.  Chapter 6 provides a general discussion of the analytical, numerical 

(FEM), and experimental results.  The conclusions and recommendations stemming from this 

research are given in Chapter 7.  Appendix A gives details of the more involved aspects of the 

mathematics of the bend model, while Appendix B gives a practical description of the bend 

model, outlining its basic functionality. 
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Chapter 2 - Experiments 

2.1 Material Selection 

 

The tubes used in this study were fabricated from 1.57 mm thick, Drawing Quality 

Aluminum Killed (DQAK) steel.  The tubes were 76.2 mm in outside diameter and were seam 

welded using an induction electrical resistance welding (ERW) process.  The sheet material was 

galvanneal (GA) coated.  The bending experiments were performed at the University of 

Waterloo, and the hydroforming was done at the Industrial Research and Development Institute 

(IRDI), as part of the AUTO21 project on tube and sheet forming. 

 

2.2 Material Characterization  

 

Tensile tests were performed on the DQAK tubes, from samples cut at different 

locations around the circumference (Figure 2.1), at the 3, 6, and 9 o’clock positions (with the 

weld seam located at 12 o’clock).  The samples were tested with the tensile axis aligned with the 

tube axis.  Curved grips were used to avoid flattening of the samples. 
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3 o’clock location 9 o’clock location 

12 o’clock location 

6 o’clock location 

weld seam 

 

Figure 2.1: Schematic of cut tensile samples around tube circumference 

 

Figure 2.2 is a plot of the resulting true stress-true strain curves for the 3, 6, and 9 

o’clock tensile specimens.  There was a small variation in strength of roughly 20 MPa between 

the various orientations, with the 6 o’clock sample having the highest yield strength.  A power 

law curve, 

nKσ ε=            (2.1) 

was fit to the average tensile data from all the three orientations, resulting in K = 531.6 MPa and 

n = 0.119 (Table 2.1).  This value for the hardening exponent, n, was surprisingly low.  Normally 

DQ sheet samples have n-values in the range 0.2. 
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Figure 2.2: Tensile data for DQAK steel and Al-3.5Mg aluminum alloy 

 

Table 2.1 shows the mechanical properties of DQAK steel.  Also given is data for Al-

3.5Mg aluminum alloy tubes that were also considered in the bending studies for comparison 

purposes.  The K and n values are not given for the aluminum tubes.  Instead, flow curve data 

was taken from tube samples for 2mm tube, from a US/CAR hydroforming study [42], and is 

also plotted in Figure 2.2. 

 

 

 

 

 

σ = 531.6⋅ε0.119 
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Material Yield 
Strength σy 

(MPa) 

Young’s 
Modulus E  

(MPa) 
Poisson’s 
Ratio ν 

Strength 
Coefficient K 

 (MPa) 

Strain 
Hardening 
Exponent n 

DQAK steel 294.0 207000 0.29 531.58 0.119 

VAW 

AlMg3.5Mn 

(Aluminum) 

119.32 67900 0.34 Not given Not given 

Table 2.1: Mechanical properties of DQAK steel and Al-3.5Mg tubes 

 

2.3 Rotary-Draw Tube Bender 

 

Bending of the tubes was carried out using an instrumented rotary-draw tube bender, 

provided by Eagle Precision Technologies, and located at the University of Waterloo.  The 

bender is hydraulically actuated and is controlled with MTS 406 servo-controllers (Figure 2.3).  

Through the use of actuators, load cells and displacement transducers, the tooling can be 

independently controlled.  Program signals are generated using a custom in-house Labview 

program developed by Dyment [43]. 
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Figure 2.3: Schematic showing in-house setup of tube-bender control system 

 

A mandrel rotary-draw tube bender operates by bending a tube around a rotating bend 

die (Figure 2.4 and 2.5).  A mandrel is positioned inside the hollow tube to prevent collapse, and 

minimize flattening (ovalization) of the cross-section.  The pressure die serves to push the tube 

against the wiper die to prevent wrinkling on the inside (compressive) region of the bend, while 

at the same time feeding the tube into the bend.  Figure 2.4 and 2.5 show different illustrations of 

a bender.  Figure 2.7 is a photograph of the rotary-draw tube bender used in this research. 
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The axial motion of the pressure die is prescribed as a “percentage boost” level.  The 

percent boost is a displacement-based boundary condition imposed on the pressure die during 

bending.  Boost is described as the ratio of the pressure die velocity (Vpd in Figure 2.5) to the 

instantaneous tangential velocity measured at the centerline bend radius of the bend die (Rc). For 

example, a 105% boost level means that the prescribed linear velocity Vpd of the pressure die, in 

the Z-direction, is 1.05⋅Rc⋅dθ/dt.  Alternatively, a boost force boundary condition can be 

prescribed (also in the Z-direction) and the resulting movement of the pressure die is dependent 

on the magnitude and direction of this force. 

 

To control the tube motion, the pressure die applies force to the tube either through 

friction or through an optional boost block, which sits at the back of the tube (Figure 2.7) and 

pushes against the back during bending. 

 

A typical sequence of operations to bend a tube, once loaded into the tube bender, is as 

follows: 

• The clamp die closes to grip the tube between the clamp and bend die 

• The mandrel advances to the prescribed forward position beyond tangency (see Figure 

2.6).  This magnitude of this forward position can be an important factor in determining a 

wrinkle-free bend 

• The pressure die closes on the tube applying the prescribed clamping force 

• The clamp and bend die rotate together and draw the tube around the bend, while the 

pressure die advances according to the prescribed boost level 

• The mandrel is retracted at the end of the bend 

• The clamp die opens and the pressure die releases, allowing the tube to be removed 
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Figure 2.4: Perspective view of tube-bender tooling 
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Figure 2.5: Top view of tube-bender (half-symmetry) 
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Figure 2.6: Distance of mandrel post beyond tangency 
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Figure 2.7: View of tube-bender located at the University of Waterloo 

 

As discussed briefly in Section 1.3, the number of mandrel balls to use, their spacing 

apart, as well as the size of the mandrel, depends on factors such as tube wall thickness relative 

to tube outside diameter (OD), and tube OD relative to centerline radius of bend, Rc.  For 

example, a thicker wall tube would require less mandrel balls than a thinner wall tube, since a 

thicker wall tube requires less internal support as it is less likely to collapse during bending. 
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Furthermore, an important consideration is the “rake angle” of the wiper die (δr), as 

shown at an inclination in Figure 2.5.  The wiper die is oriented at an optimal angle from the axis 

of the tube, typically in the 0.25º range, to minimize frictional drag between tube and wiper 

during bending, and also to prevent wrinkling on the inside of the bend. 

 

2.3.1 Tool Description 

 

The bend tooling consists of: the bend die, pressure die, clamp die, wiper die, and 

mandrel (Figure 2.8).  The bend die, clamp die and pressure die were manufactured from 4130 

tool steel and then nitrided to 60-62 Rc.  The wiper die used in this work was made from 4130 

tool steel and was not hardened.  The mandrel was fabricated from 8620 tool steel, hardened to 

58-62 Rc, and then given a chrome surface-finish.  The mandrel has two mandrel balls.  The 

mandrel size was chosen such that the diametral clearance between the tube ID and mandrel OD 

is in the range 0.5-0.7 mm.  A low clearance is ideal to maintain the circular cross-section 

(minimize ovalization) and to reduce risk of wrinkling during bending. 

 

Bend tooling corresponding to an Rc/d ratio of 2.5 was used for the majority of the 

DQAK tube studied in this thesis.  There is also a brief discussion, in Chapter 5, of results for an 

Rc/d of 2.0.  Pictures and major dimensions of the Rc/d = 2.5 bend tooling are shown in Figure 

2.8.   Note that the actual bend centerline radius (CLR) of the bend die was 188.6 mm, rather 

than 190.5 mm, corresponding to Rc/d = 2.5, for a 76.2 mm OD.  The actual bend radius 

compensates for springback after bending to obtain a final Rc/d ratio close to 2.5.  
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Figure 2.8: Pictures of bend tooling showing: a) Pressure Die, b) Clamp Die, c) Mandrel, d) Wiper 
Die, e) Rc/d = 2.0 Bend Die, f) Rc/d = 2.5 Bend Die 

 

2.4 Bend procedure 

 

Prior to testing, the tube is lubricated with Hydrodraw 615, on the outside surface of the 

tube coming into contact with the wiper die during bending.  Hydrodraw 615 is a thick, highly 

viscous fluid lubricant, which has excellent corrosion resisting properties when used on ferrous 

alloys such as steel [9]. The tube was aligned so that the weld seam of the tube was positioned 

upwards, lying approximately along the neutral axis, such that the material properties in the 

vicinity of the weld seam have a limited effect on the strain and thickness evolution on the inside 
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and outside of the bend.  A brass plug was inserted into the clamped region of the tube to help 

support high clamping loads needed to reduce slip during the bend. 

 

In this study, a tube would be placed inside the bender, and the bend would be initiated 

by first raising the clamp die to secure the position of the tube.  Then Hydrodraw 615 lubricant 

was pumped through the mandrel to lubricate the inside of the tube.  The mandrel was then 

advanced forward to the test position, beyond tangency. This forward motion serves to spread 

out the lubricant along the mandrel surface and the inside surface of the tube.  The pressure die 

was then closed to the appropriate clamping load.  Lastly, the bend die and pressure die are 

moved in a synchronized fashion to bend the tube to the required angle.  The bend angle was 

such that, after springback, the tube would fit snugly inside the 90º hydroforming die for the 

second forming operation.  To remove the tube, the clamp die was opened, followed by release 

of the pressure die clamping force.  The tube could then be taken out and cleaned prior to strain 

grid measurement (discussed in Section 2.6). 

 

2.5 Hydroforming 

 

The pre-bent tubes were hydroformed at the Industrial Research and Development 

Institute (IRDI).  A teardrop-shaped outside corner-fill die, as shown in Figure 2.9, was used in 

the hydroforming operation [44].  The material of the die and end-plugs is P20 tool steel, and 

non-hardened. 

 

This die forces the tube to expand in the region of largest bending strains and thinning 

(outside of the bend).  Tapered end plugs were used to seal the ends of the tube during 

hydroforming.  The lubricant used was Hydrodraw 625, a very effective solid film lubricant, 

which was applied to the surface of the tube in liquid form, and then upon drying leaves a solid 

film behind. 
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The tubes were expanded with a slowly increasing internal water pressure, ramped up 

linearly with time, and the expansion of the tube on the outside of the bend, at a bend angle 

location of 45°, was recorded in real time.  Several tubes were expanded to burst, while others 

were expanded to 70% and 90% of the expansion at burst (at the 45º location), as well as to the 

onset of necking.  The strains and thickness on selected hydroformed tubes were then measured 

at the University of Waterloo. 

 

 

End Plugs 

Hydroforming
Die 

Tube expansion 
measured here using 
sensor 

      

 

 

Figure 2.9: Half of outside corner-fill hydroforming die with closed section A-A shown [44] 

 

2.6 Specimen Preparation 

 

Depending on the test condition, the DQAK steel tubes were cut to either 750 mm or 

1000 mm in length.  The 750 mm length tubes were used for bend cases, where the boost block 

was not required since it was intended that friction between pressure die and tube be the means 

to push the tube forward.  For the boost cases which used the boost block, the tubes were cut to 

1000 mm, long enough to allow the back of the tube to sit against the boost block on the pressure 
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die.  After cutting, the tubes were deburred and cleaned thoroughly using the Lectroetch Co.’s 

Formula 1 – All Purpose Cleaner.  Next, an in-house apparatus was used to electrochemically 

etch circle grids onto the outside surface of the tubes using the Lectrotech Co.’s Formula 112A 

etchant.  The circle grid stencil was covered with a felt pad soaked with the electrolyte.  A 20-30 

V DC current was used and a conducting plug was inserted into one end of the tube.  The tube 

was rolled on a copper plate, which acts as an electrical conducting base underneath the felt-pad 

and stencil.  The electrical circuit is completed once the tube is rolled, with downward pressure, 

over the stencil.  As the tube slowly rolls over the stencil the imprint of the circle grids is 

electrochemically etched onto its outer surface.  Following the etching procedure, the outside of 

the tubes were cleaned again using the cleaner, to remove any excess electrolyte.  The tubes were 

gridded using a nylon sheet stencil, with a 0.1” circle size.   

 

In order to accurately determine the change in dimensions of the grids after 

deformation, it was necessary to measure their initial dimensions (before deformation) and use 

these measurements as a means of calibration.  To calibrate, four tubes were randomly selected 

from a batch of 60 straight (undeformed) gridded tubes.  Three circle grids were measured on 

each tube, chosen at random locations.  Each of these circle grids had four separate 

measurements taken on them, for a total of 48 calibration measurements.  This large calibration 

sample, taken as an overall average of the initial grid sizes, allowed for good accuracy in 

measuring grid strains after deformation, both in bending and hydroforming.  The variability in 

grid size was roughly 2 – 3%. 

 

The strain measurement equipment consisted of a micro-CCD video probe, attached to a 

PC, which was used to capture an image of the grids.  Using manually selected points, a custom 

image analysis system was used to fit an ellipse to the grids in the image.  The program then 

calculates the strains the circle grid experienced, relative to the calibration measurements.  The 

percentage changes in the major and minor diameters represent the percentage principal 
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engineering strains at the grid.   Further details regarding the grid strain measurement system, are 

given by Lee [45] and Cinotti [46] 

 

After bending, strains were measured on the inside and outside of the bend (the two 

extremes), as well as around the circumference at the 45º bend location, where the strain and 

thickness is fully developed.  After hydroforming, the strains and thickness values were 

measured on the outside of the tube and at the 45º bend location.  See Figure 2.10 for the 

measurement convention used in this study. 
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Figure 2.10: Measuring convention for bent and hydroformed tubes 

 

In the curved region of the tube the measured longitudinal angle is simply θ*.  The right 

hand figure shows the measuring convention around the circumference, for angle α*. Note that 

the left hand illustration, in Figure 2.10, shows the inside and outside longitudinal angles θ1 and 

θ2, in both straight regions.  In the mandrel region, the longitudinal angle in the straight region is 
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measured as θ*  =  -θ1 =  -atan(xi/Ri) on the inside of the bend, and θ*  =  -θ1 =  -atan(xo/Ro) on 

the outside.  In the clamp region, the longitudinal angle in the straight region is measured as 

θ*  = 90º + θ2 = 90º + atan(yi/Ri) on the inside and θ*  =  90º + θ2 = 90º + atan(yo/Ro) on the 

outside.  Note that xi, xo, yi, yo denote the distance of a circle grid from the start of the straight 

region, on the clamp and mandrel side. 

 

2.7 Test Matrix 

 

For each boost condition in the Rc/d = 2.5 study, 19 tubes were bent, for a total of 57 

tubes.  The boost conditions tested were: 

• LE95 (low, 95% boost with boost block) 

• ME100 (medium, 100% boost with boost block) 

• NB100 (medium, 100 % boost with no boost block - friction feed) 

 

It was intended to study a fourth boost case at a high boost of 105%, but the medium 

boost case was the highest that could be achieved reliably given the existing pressure die 

assembly and actuator. 

 

As mentioned, the majority of the experiments in this study considered a bend condition 

corresponding to a centerline bend radius Rc to tube diameter ratio of 2.5.  Table 2.2 summarizes 

the three different boost conditions for bending, corresponding to Rc/d = 2.5. 
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Boost 

Condition 

Bend 

Angle 

Pressure Die 

Clamp 

Force 

Mandrel 

Position (beyond 

tangency) 

Wiper 
Orientation

Lubrication 

Conditions 

100% 
Boost 
(ME100) 

91° 66.7 kN 1.5 mm ~0.25° Hydrodraw 615:  

mandrel and wiper 

95% 
Boost 
(LE95) 

91° 57.8 kN 5.0 mm ~0.25° Hydrodraw 615:  

mandrel and wiper 

100% No 
Boost 
Block 
(NB100) 

91° 66.7 kN 1.5 mm ~0.25° Hydrodraw 615:  

mandrel and wiper 

Table 2.2: Process Conditions for Bending for Rc/d = 2.5 

 

From Table 2.2, one can see that the pressure die clamping force and the mandrel 

position were not held constant throughout all the tests.  It was necessary to find a set of 

conditions that would produce good wrinkle-free bends at each level of boost, even if this meant 

altering the test conditions, somewhat, for each case. 

 

Table 2.3 shows the test conditions for each of the three boost cases, for hydroforming 

of the Rc/d = 2.5 tubes.  While the majority of the tubes were hydroformed after bending, only 

selected cases are examined in this thesis, which focuses primarily on the analytical bend model.  

More in-depth treatment of the hydroforming results is provided by Dyment [43]. 
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Hydroforming 

Condition 

Samples 

Needed 

Extra 

Samples 

Total 

Samples 

Burst 3 1 4 

90% of Expansion 

at Burst 

2 1 3 

70% of Expansion 

at Burst 

2 1 3 

Necking 5 4 9 

Totals 12 7 19 

Table 2.3: Hydroforming Test Matrix 
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Chapter 3– Mathematical Model Development 

The purpose of this chapter is to give an in-depth overview of the solid mechanics 

incorporated into the analytical bend software program.  Derivations from first principles are 

presented for the more fundamental equations, and also their implementation in the code is 

discussed.  Equations are developed on the basis of the final bent-tube geometry. 

 

As it turns out, the specific mathematical formulae in the literature surveyed proved to 

be overly-simplified for direct use in the analytical model.  However, basic tube bending 

equations found in the published literature did serve to aid in understanding the tube-bending 

problem.  One major shortcoming in the published literature is the lack of consideration of the 

contribution of axial forces on strains and thickness.  In reality, large axial “boost” forces are 

present in rotary-draw tube bending, and one must take into account the membrane component of 

axial strain.  In the current analytical model, “axial boost” is taken into account, as will be 

discussed in detail in this chapter. 

 

It was also found in the literature surveyed that the prediction of hoop strain is not given 

rigorous treatment, and in some cases neglected altogether.  Adequate prediction of hoop strain is 

necessary for better overall strain prediction, resulting in improved thickness predictions.  In this 
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chapter, an approximate means of formulating and predicting hoop strain in tube bending, using 

a mandrel, is presented. 

 

Also of significance, an empirical formulation for the decay of stress, strain, and 

thickness change at each end of the bend is presented, as implemented in the current bend model.  

Analytical formulation of decay near the ends of the bend proved to be too complex, instead; 

exponential decay functions were developed with constants adjusted to best match experimental 

and numerical data. 

 

The simplifying physical assumptions in the model are: 

 

• The mandrel keeps tube ovalization to a minimum during bending; hence, the 

tube is assumed to remain circular 

• The tubes are thin-walled 

• Planar cross-section surfaces remain plane before and after bending 

• Frictional effects between the tooling and tube are not considered 

• No normal stress exists in the through-thickness direction 

• In-plane shear stresses and shear strains are neglected 
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3.1 Strain Distribution 

 

Figure 3.1 shows the deformed tube cross-section and highlights key parameters that are 

referred to in the model description.  In this analysis, subscript ‘1’ denotes the axial direction (θ), 

‘2’ denotes the hoop direction (α), and ‘3’ denotes the thickness direction (t).  

 

  

A   y   

R c 

d/2   

d/2   

α 

r

centerline axis 
neutral axis (NA) 

α =π  (compressive) 

α =0 (tensile) 

α NA

bend axi s   

θ   

R c   

bend axis   

Compressive   
side   

Tensile side   

Cross - sectional area 

tA

tB

t C   

R   

 

Figure 3.1: Geometry of cross-section 

Section A-A 

A 

A 
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A general strain distribution formulation is presented below, first taking into account 

pure bending and the corresponding neutral axis shift, a distance A, below the tube centerline. 

 

In the pure bending case, consider the distribution of axial true strain as 

ln 1
c

y A
R A

ε
⎛ ⎞+= +⎜ ⎟−⎝ ⎠

true
1               (3.1) 

where cosy r α= ⋅ .  To derive this expression, consider first a tube bent to an arbitrary angle θ 

(see Figure 3.1).  There is a neutral fibre (arc) located at a distance A below the centerline (at 

bend radius R = Rc –A), which experiences no axial strain.  Consequently, this neutral fibre has 

an arc length equal to its length before bending.  Since the tube was straight before bending, this 

length can be used as the initial length of all fibres before bending.  Call this length 

( )o cl R A θ= − ⋅   (3.2) 

 

At any arbitrary bend radius R of the tube one can write 

1 ( )cl R y θ= + ⋅   (3.3) 

where y is measured from the centerline, as shown in Figure 3.1.  The engineering strain is given 

by 

 

1
1

( ) ( )
( )

eng o c c

o c c

l l R y R A y A
l R A R A

θ θε
θ

− + ⋅ − − ⋅ += = =
− ⋅ −

         (3.4) 

and the true strain becomes ( )ln 1 ε+ eng
1  as in (3.1). 
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3.1.1 Hoop Strain Calculation for Pure Bending Case 

 

Consider the calculations for average hoop strain (average through the thickness for 

each α).  This average is approximately at the mid-surface radius, r = ro, so that 
2 2o
d tr = − , with 

t as the original wall thickness.  See Figure 3.2 for an illustration of the hoop strain calculation. 

b a

Lb La

m 

σ1
b, ε1

b σ1
a, ε1

a

hoop direction 

axial direction 

αNA

b – tensile region 

a – compressive region 

m

 

Figure 3.2: Physical representation for calculating hoop strain 

(B) 

(A) 
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The very useful simplification for the hoop strain calculation is shown in Figure 3.2.  

Note that the hoop direction is the α direction, and the axial direction is the θ direction.  The tube 

cross-section in Figure 3.2 (B) can be divided into two distinct regions of axial stress and strain, 

one compressive and the other tensile.  It is assumed the hoop strain is constant in each region.  

Furthermore, if the tube diameter is constant due to the presence of the mandrel, then the total 

change in circumference due to the hoop strains must be zero.  If one imagines “unwrapping the 

tube”, then the flat plate shown in Figure 3.2 (A), with rigidly constrained edges, is analogous to 

the hoop strain analysis of the tube. 

 

1
bε is the average, or “effective”, (positive) axial true strain over the range 0 ≤ α ≤ αNA, 

where αNA is the particular angle α where the axial, and hoop strain, change sign. 1
aε is the 

average, or “effective”,  (negative) axial true strain over the range of αNA ≤ α  ≤ π.  Half-

symmetry is assumed in the modeling, corresponding to a range 0 ≤ α ≤ π. 

 

Mathematically, this can be expressed as 

 

1 1
0

1 ( )
NA

b true
o

o NA

r d
r

α

ε ε α α
α

= ⋅ ⋅
⋅ ∫            (3.5) 

 

and 

 

1 1
1 ( )

( )
NA

a true
o

o NA

r d
r

π

α

ε ε α α
π α

= ⋅ ⋅
⋅ − ∫            (3.6)  

 

Now set 

b o NAL r α= ⋅   (3.7) 
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and 

( )a o NAL r π α= ⋅ −              (3.8) 

 

The compatibility condition is illustrated in Figure 3.2 (A), and is such that, at the 

interface, the two elements (a and b) move the same distance m.  The average, or effective, 

values of stress and strain (for elements a and b) are used only for the purpose of approximating 

the interface displacement m.  With this displacement m known, the approximate average hoop 

strains are calculated. The assumption here is that the hoop strain is roughly constant over the 

compressive and tensile regions, justifying the use of average values.  This assumption is 

justified by the numerical FEM and experimental results, presented in Chapter 5.  Also, 

accounting for the hoop strain gradient, in the α direction, would require a much more complex 

mathematical treatment, solving partial differential equations of stress equilibrium, coupled with 

constitutive equations.  This would greatly increase the model complexity and computation time 

without an appreciable increase in accuracy. 

 

Both elements experience the same hoop stress σ2 at the interface, and using Hencky's 

plastic stress-strain relations [47]: 

 

1 1 2
1 1( )

2
a a

a
sE

ε σ σ= ⋅ −   (3.9) 

2 2 1
1 1ln(1 ) ( )

2
a a

a
a s

m
L E

ε σ σ= + = ⋅ −          (3.10) 

1 1 2
1 1( )

2
b b

b
sE

ε σ σ= ⋅ −            (3.11) 

2 2 1
1 1ln(1 ) ( )

2
b b

b
b s

m
L E

ε σ σ= − = ⋅ −          (3.12) 
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Now, 

 

2 2 2
1 2 3

2, [( ) ( ) ( ) ]
3

a
effa a a a a

s effa
eff

E
σ

ε ε ε ε
ε

= = + +   (3.13) 

 

where ( )a a a
eff eff effσ σ ε= , and this functional relationship is defined by the power law expression 

( )n
eff yp effKσ ε ε= ⋅ + , or flow curve data.  Note that εeff is the effective plastic strain, and εyp is the 

yield point, which is calculated by solving for the intersection of Eσ ε= ⋅ and nKσ ε= ⋅ , for the 

power law formulation.  Solving, 
1/( 1)n

yp
E
K

ε
−

⎛ ⎞= ⎜ ⎟⎝ ⎠
.   

 

Similarly, 

 

2 2 2
1 2 3

2, [( ) ( ) ( ) ]
3

b
effb b b b b

s effb
eff

E
σ

ε ε ε ε
ε

= = + + , and ( )b b b
eff eff effσ σ ε=            (3.14) 

 

Equations (3.9) - (3.12) are solved numerically (for m) using the bisection method 

(discussed in Appendix A.1 and A.2).  With m calculated one can directly calculate the 

engineering hoop strains: 

 

,
2
a eng

a

m
L

ε = , constant over αNA ≤ α ≤  π  (3.15) 

 

,
2
b eng

b

m
L

ε = − , constant over 0 ≤ α ≤  αNA                   (3.16) 

 

Then, for pure bending  
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,
2

,
2

, 0

,hoop

b eng
NAo

a eng
NA

f for

f for

ε α α
ε

ε α α π
⎧ ⎫⋅ ≤ ≤⎪ ⎪= ⎨ ⎬

⋅ ≤ ≤⎪ ⎪⎩ ⎭
       (3.17) 

where 21 exp{ 3.0 ( ) }NAf α α= − − ⋅ − which “forces” a smooth transition between ,
2
b engε  and 

,
2
a engε at α = αNA (Figure 3.3).  This forced transition is mathematically necessary to avoid 

unrealistic discontinuity affects (such as a thickness “spike”) near the transition angle α = αNA.  

Note that o
hoopε is, effectively, a through-thickness average. 

 

αNA πα 

b 

a 
ε2

a,eng 
 
 
ε2

b,eng 

 

Figure 3.3: Hoop strain distribution 

 

 

This approach essentially amounts to adopting two nearly constant average hoop strains, 

one over the region of the tube where axial strain is positive, and the second where axial strain is 

negative.  Physically speaking, for positive axial strain the hoop strain is negative, by volume 

conservation, and similarly, for negative axial strain the hoop strain is positive. 

 

Mathematically, the pure bending requirement (zero axial boost force) can be expressed 

as an integral of the stresses over the cross-sectional area 

( ) 0
Area

dAreaε =∫ true
1 1σ           (3.18) 



 

 69

(3.18) is calculated numerically using a double integral, over the (final) deformed cross-

sectional area.  The distance A is such that this expression is satisfied.  Furthermore, the cross-

sectional area is such that Area = Area( 1ε , o
hoopε ), justifying the use of iteration to solve for A. 

 

In Figure 3.1, tA, tB, and tC are thickness values used as input for fitting an ellipse of 

best fit on the inside diameter of the deformed tube.  This allows the cross-sectional area to be 

calculated with very good accuracy. 

 

To illustrate how the program solves for A (neutral axis offset from centerline, for pure 

bending), consider Figure 3.4. 

 

 Bisection Method 
(initial upper and 
lower bounds of A 
are A = 0, A = d/2)

For each A value 
solve eqn’s 3.9, 3.10, 3.11, 3.12 
to calculate hoop strain 
(bisection method used to solve these 
numerically) 

With hoop strain calculated, 
perform checks based on 
requirement that axial force is 
0 (for pure bending) 

Update A value 
(repeat until 
convergence is 
reached within a 
certain tolerance) 

 

Figure 3.4: Schematic of neutral axis offset calculation for pure bending 
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3.1.2 Pure Bending with addition of Membrane Strain 

 

For the general case consider the distribution of axial strain as 

ln 1 ( )
c

y A e
R A

ε α
⎛ ⎞+= + +⎜ ⎟−⎝ ⎠

true
1                                                                                              (3.19) 

where e(α)≠0 is the membrane component of axial strain due to the addition of axial push/pull 

boost force on the tube during bending (as shown by Zhang and Duncan [5]).  For pure bending 

with zero axial force, e(α)=0.  Thus, with the addition of axial force, there will be an additional 

membrane axial strain superimposed on the pure bending strains.  Here, the (net) axial force is 

the force due to deformation and does not include friction.  

 

Mathematically, 

 Fdeformation = Fapplied - Ffriction                                                                                                (3.20) 

 

To illustrate the methodology used to calculate e(α), consider Figure 3.5 for a 90° bend. 
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S < S* 

S* 

S >S* Rc

α 

Strip A 

Strip B 

A

a

b 

w 

Start position of the back of tube before bending 

 

Figure 3.5: Diagram illustrating different boost conditions 

 

From the figure, S* denotes the travel of the back of the tube during the bend, for pure 

bending.  S is defined as the travel of the back of the tube for the general bending case, which 

may include boost.  Set S-S* = lb, in which lb>0 for “pushing” boost and lb<0 for “pulling” boost.  
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S = S* for pure bending and S* may be viewed as a reference value.  For pure bending, S = S* is 

the arc length ab (at bend radius R = Rc-A), shown on Figure 3.5. 

 

Strip A and B are thin strips of tube material taken through the tube thickness, at angle 

α. 

 

The boost distance can be written as, 

( )
100

b
c c

percent boostl R R Aθ θ= ⋅ ⋅ − − ⋅                                                                      (3.21) 

where θ corresponds to any arbitrary bend angle. 

 

Since the volume of strip A, of length |S-S*|, must equal the volume added on to or 

taken away from the volume of strip B, for pure bending, one can form an expression to solve for 

e(α) in terms of lb. 

 

To show how the expression relating e(α) and lb is derived, first set the volume of strip 

A as 

bV t l w= ⋅ ⋅                                                                                                                         (3.22) 

 

For lb > 0, V > 0; and for lb < 0, V < 0.  For pure bending, lb = 0, e(α)=0. 

 

The width of strip A is constant for all boost cases and is set equal to w.  However, the 

width of strip B, in the curved region, changes with different boost cases and is set equal to w for 

the pure bending case, in eq. (3.23).   
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One can write directly the width of strip B as 

1

o
hoop hoop

new o
hoop

w w w
ε ε

ε
−

= +
+

                                                                                                (3.23) 

w is the width of the strip for pure bending, which is evident if one sets o
hoop hoopε ε= for 

the degenerate case where e(α)=0.  εhoop is the hoop strain for the general case where e(α)≠0. 

 

For pure bending, the volume of the strip B in the curved bend, of angle θ, is 

1 { ( ) 0}new SBV t e w Lα= = ⋅ ⋅                                                                                                     (3.24) 

where LSB is the arc length of strip B and is approximately 

[( ) cos( ) ]
2SB b c
dL t Rα θ= − ⋅ + ⋅                                                                                      (3.25) 

tb corresponds to the wall thickness for pure bending (e(α) = 0). 

 

Now consider the volume of strip B for the general case when there is axial force 

present, e(α)≠0.  Call this volume V2. 

 

Using the same approximate arc length LSB as for pure bending, one can write the volume 

of strip B as 

2 { ( )} [ ] [( ) cos( ) ]
1 2

o
hoop hoop

new b co
hoop

dV t e w w t R
ε ε

α α θ
ε
−

= ⋅ + ⋅ − ⋅ + ⋅
+

                                      (3.26) 

tnew is the tube wall thickness after bending.  An expression for tnew will be derived later on. 

 

Using the fact that volume is conserved in plastic deformation, one can write V2 – V1 = 

V.  As a result, one can write the final expression relating e(α) and lb, with w canceling out: 

{ ( )} (1 ) { ( ) 0} ( ) cos( )
1 2

o
hoop hoop b

new new b co
hoop

dt e t e t R t l
ε ε

θ
ε

⎛ ⎞− ⎛ ⎞⋅ + − = ⋅ − ⋅ + ⋅ = ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠
α α α         (3.27) 
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(3.21) is substituted for lb, on the right side.  Note that θ cancels out meaning that the 

above expression is independent of bend angle. 

 

3.1.2.1 Hoop Strain Calculation for non-zero Boost Force 

 

For the general case where e(α) ≠ 0, consider again the hoop strain calculation where an 

average hoop strain (through the thickness) is used, at the mid-surface radius, 
2 2o
d tr = − . 

 

As before, set 1
bε as the average positive axial strain over the range 0 ≤ α ≤ αNA, where 

αNA is the particular angle α where the axial and hoop strain change sign.  Note that 0 < αNA < π, 

since the membrane strain component can shift this neutral axis to any arbitrary angle α, within 

this range. 

 

Set 1
aε as the average negative axial strain over the range of αNA ≤ α  ≤ π.  

Mathematically, this can be expressed as 

 

1 1
0

1 ( )
NA

b true
o

o NA

r d
r

α

ε ε α α
α

= ⋅ ⋅
⋅ ∫                                                                                      (3.28) 

and 

1 1
1 ( )

( )
NA

a true
o

o NA

r d
r

π

α

ε ε α α
π α

= ⋅ ⋅
⋅ − ∫                                                                             (3.29) 

 

Note that αNA ≠ αNAo necessarily, where αNAo is the neutral axis angle for pure bending.  

Equality is only for e(α) = 0. 
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As before, set 

b o NAL r α= ⋅          (3.30) 

and 

( )a o NAL r π α= ⋅ −                                                                                                         (3.31) 

 

Solving the same set of equations as before, (3.9) - (3.12), one obtains 

,
2
a eng

a

m
L

ε = , for αNA ≤ α ≤  π   (3.32) 

and 

,
2
b eng

b

m
L

ε = − , for 0 ≤ α ≤  αNA                                                                       (3.33) 

 

Then, for the general bending case 

,
2

,
2

, 0

,

b eng
NA

hoop a eng
NA

f for

f for

ε α α
ε

ε α α π
⎧ ⎫⋅ ≤ ≤⎪ ⎪= ⎨ ⎬

⋅ ≤ ≤⎪ ⎪⎩ ⎭
                                                                           (3.34) 

using the same expression f from before.  Note that hoopε is, effectively, a through-thickness 

average. 

 

For axial loading, ln 1 ( )
c

y A e
R A

ε α
⎛ ⎞+= + +⎜ ⎟−⎝ ⎠

true
1 , and e(α) depends on hoop strain, from eq. 

(3.27).  This means that for axial loading, ε true
1 depends on hoop strain, so that 1 1 ( )true true

hoopε ε ε= .  

This means that hoopε must be such that { ( )}hoopε ε ε ε=a a true
1 1 1 and { ( )}hoopε ε ε ε=b b true

1 1 1 give the same 

hoopε back out again when solving (3.9) - (3.12).  Mathematically, an iterative method is used to 

solve for hoopε , which can mathematically be expressed as 

1 1 1 1[ 1] ( { ( [ ])}, { ( [ ])})a true b true
hoop hoop hoopi g i iε ε ε ε ε ε ε+ =                (3.35) 
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This iteration is performed a sufficient number of times to get convergence within a desired 

tolerance so that [ 1] [ ]hoop hoopi iε ε+ ≅ , with [1] o
hoop hoopε ε= to start the iteration. The calculation of 

o
hoopε  does not require iteration to solve for, because e(α) = 0.  Furthermore, since αNA is coupled 

with hoopε , then αNA is solved for along with hoopε . 

 

There are two distinct cases to consider when dealing with the addition of axial force.  

The first case is when the program user specifies a percent boost, from which lb can be calculated 

directly.  With lb known, one can immediately obtain e(α) which can be calculated directly after 

solving for εhoop using the recursive iteration method just described.  In this case the net axial 

boost force can be determined directly by numerically calculating an integral of the stresses over 

the cross-sectional area.  This integral can be expressed as 

 

) boost
Area

dArea Fε =∫ true
1 1σ (                                                                   (3.36) 

 

To illustrate how the program solves for Fboost consider the following schematic in 

Figure 3.6:  
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 If percent boost is 
prescribed, then lb 
can be calculated 
directly (eq. 3.27) 

Given lb solve for εhoop, 
αNA, and e(α) using 
iteration method (eq. 3.35)

With εhoop, αNA, and  e(α) 
calculated solve for net boost 
force Fboost directly (eq. 3.36) 

 

Figure 3.6: Schematic showing solution for Fboost 
 

The second case is when Fboost is prescribed, meaning that one must use a numerical 

method to solve for the particular lb such that ) boost
Area

dA Fε =∫ true
1 1σ ( .  In this case the bisection 

method is used once more.  The only difference between this second case and the first case is 

that the program must march though a series of lb values until the prescribed boost force is 

satisfied, within a certain tolerance.  Consequently, the run time takes longer.  Schematically this 

is illustrated in Figure 3.7: 
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If net boost force Fboost is prescribed,  
use bisection method to solve for lb. 
(appropriate initial upper and lower 
bounds of lb used, depending if Fboost > 0 
or Fboost < 0) 

Compare Fboost to prescribed 
value, using bisection method 
checks 

Update lb value 
(repeat until 
convergence is 
reached within a 
certain tolerance) 

For each estimate of lb solve 
for εhoop, αNA, and e(α) using 
(3.27) and (3.35) 

With εhoop, αNA, and  e(α) 
calculated solve for net boost 
force Fboost directly (eq. 3.36) 

 

Figure 3.7: Schematic showing iterative Fboost calculation 
 

 

 

3.2 Thickness Calculation 

 

 

To solve for the wall thickness after bending, one must first consider volume 

conservation for plasticity. 
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By volume conservation for plastic deformation, 

2 3ln 1 ( ) ln(1 ) ln(1 ) 0eng eng

c

y A e
R A

α ε ε
⎛ ⎞++ + + + + + =⎜ ⎟−⎝ ⎠

                                                     (3.37) 

 

Therefore, 

3

2

1 1 1
exp{ ( )}

1 (1 )

eng

eng

c

e y A
R A

ε
α

ε
= ⋅ −

⎛ ⎞++ ⋅ +⎜ ⎟−⎝ ⎠

          (3.38) 

 

Substituting y = r⋅cosα into (3.38), the new wall thickness after bending is calculated as 

/ 2

3
/ 2

d

new
d t

t t drε
−

= + ∫   (integrated from inside radius of tube to outside radius, on original un-

deformed geometry).  If one uses the average through-thickness engineering hoop strain ( 2,
eng

avgε ) 

to simplify calculations then 

2,

( / 2) cos( )1( ) ln
exp{ ( )} cos( (1 ) ( / 2 ) cos( )

c c
new eng

avg c

R A R dt
e R d tε

− + ⋅= ⋅ ⋅
⋅ + + − ⋅

αα
α α) α

                                 (3.39) 

 

From before, 2,
eng

avg hoopε ε≡  for the general bending case, with non-zero axial boost force; 

and 2,
eng o

avg hoopε ε≡ for pure bending, with zero axial boost force. 

 

3.3 Plasticity Equations – Stress Formulation 

 

In the local coordinate frame 1 2 3x x x  of the bent tube (see Figure 3.8) the boundary 

condition is σ3 = 0.   Once more one can apply the Hencky equations for total plasticity [47].  
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These equations are valid for near proportional loading, as is the case in the tube bending 

process.  One can write: 

1 1 2

2 2 1

3 1 2

1 1( )
2

1 1( )
2

1 1 1( )
2 2

true

s

true

s

true

s

E

E

E

ε σ σ

ε σ σ

ε σ σ

= ⋅ −

= ⋅ −

= ⋅ − −

           (3.40)  

 

From the first 2 equations of (3.40), one can obtain expressions for σ1 and σ2. 

1

2

2
1.5

2 4
3

pl pl

pl pl

A B

A B

σ

σ

+
=

+
=

  (3.41) 

 

where 1
true

pl sA Eε= ⋅  and 2
true

pl sB Eε= ⋅  

 

For given material constants K and n, one can write 

( )n
eff eff yp

s
eff eff

K
E

σ ε ε
ε ε

+
= =   (3.42) 

using the same εyp from before.  Alternatively, Es can be calculated from flow curve data. 

 

Now, 

2 2 2
1 2 3

2 [( ) ( ) ( ) ]
3

true true true
effε ε ε ε= + +   (3.43) 
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By volume conservation 

1 2 3 0true true trueε ε ε+ + =   (3.44) 

 

From (3.41) one can solve for 1 1 1 2( , )true trueσ σ ε ε= .  This is substituted into (3.18) and 

(3.36). 

Rc 
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x2
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Figure 3.8: Local ( 1 2 3x x x ) and global ( 1 2 3X X X ) coordinate system of tube 

 

The true strains εij, and the residual stresses after springback, σij
res, are calculated in the local 

system 1 2 3x x x .  Using stress and strain transformation equations, εij and σij
res are then calculated 

in the global reference frame 1 2 3X X X  for each integration point, and output to files in a format 

suitable for FEM simulation of a subsequent hydroform process.  This is discussed in greater 

detail in Appendix A.5. 
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3.4 Elastic Stress and Springback Calculations 

 

To predict elastic springback, after unloading, a moment calculation must be performed 

over the cross-sectional area, about the centroid of area, for the elastic-plastic stresses due to 

bending. 

 

1
) ( )true

ct
Area

M y E dAreaε= ⋅ + ⋅∫ 1σ (   (3.45) 

where Ect is the centroid distance below the centerline (shown in Figure 3.1).  In the program, M 

is calculated numerically with a double integral, and is calculated with εhoop and e(α) already 

calculated. 

 

For springback calculations it is necessary to calculate the elastic stresses due to M and 

Fboost (Fboost = 0 for pure bending). 

 

From elementary solid mechanics [48], the axial elastic stress during unloading 

(springback) is 

( )
( )

e e
NA b boost

e e e
cs b c NA cs

M R r F
A r r R A

−= +
⋅ ⋅ −

e
1σ           (3.46) 

with the variables defined in the nomenclature section. 

 

(3.46) is a general curved beam formula for elastic bending, and assumes that the cross-

section of area remains plane during bending, and that the material is isotropic. 

 

In the local 1 2 3x x x  system, the elastic hoop stress can be approximated using the same 

method as in Section 3.1.1.  To start the calculation, two average (effective) axial stresses are 
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calculated instead of strains, since 1
eσ  is already known by (3.46).  Similar to before, one 

calculates two stress-averages for the tensile and compressive region, from (3.46).  In particular, 

an average ,
1
e bσ  and ,

1
e aσ  is used instead of 1

bε  and 1
aε , as in (3.5) and (3.6).  In the same way as 

before, one solves for the elastic hoop strain e
hoopε  using (3.9) - (3.12).  Note that E is constant this 

time, and replaces b
sE  and a

sE .  Once the two average elastic hoop strains are calculated, the 

same transition function f is used as before at the transition angle for the elastic stresses, e
NAα . 

 

With elastic hoop strain calculated, and treating it as a through-thickness average, one 

can proceed to solve for 2
eσ  at each point in the cross-section, using the three-dimensional 

Hooke’s Law expression (3.47), with 3σ  = 0: 

2 1
e e e

hoop Eσ ε νσ≅ ⋅ +   (3.47) 

and also from Hooke’s Law, the axial elastic (engineering) strain is 

 

1 1 2
1 )e e e

E
ε νσ≅ −(σ   (3.48)  

 

Thus, the residual stress is 

σij
res = σij - σij

e  (3.49) 

in the local 1 2 3x x x  system. 

 

After springback, the original centerline radius Rco becomes R′c.  The inside radius (at α = 

π) becomes R′c- d/2, and the outside radius (at α = 0) becomes R′c+d/2, after springback.  Also, 

the tube springs back to a new bend angle θ’, from original angle θo.  Therefore, one can 

formulate the following expressions to solve for Rco and θo, based on the changes in arc length on 

the inside (compressive) side of tube and the outside (tensile) side of tube, respectively 
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' '( ) {( ) ( ) ( )}
2 2 2c co co o
d d dR R Rθ ε α π θ− ⋅ = − − − ⋅ = ⋅e

1  (3.50) 

 

 

' '( ) {( ) ( ) ( 0)}
2 2 2c co co o
d d dR R Rθ ε α θ+ ⋅ = + − + ⋅ = ⋅e

1  (3.51) 

 

where 1 ( )eε α π=  corresponds to the axial elastic strain at R = Rco-d/2, and 1 ( 0)eε α =  corresponds 

to the axial elastic strain at R = Rco+d/2, after forming, and is determined from (3.48).  In the 

program, one inputs the desired centerline radius R′c and bend angle θ’ after springback and use 

(3.50), (3.51) to calculate the initial centerline bend radius and bend angle, Rco and θo, such that 

after springback one obtains these desired dimensions. 
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Chapter 4- Finite Element Pre-bend and Hydroform Numerical 
Models 

4.1 FE Bend Model 

 

A numerical (FE) model of the bending operation was developed which utilizes an 

explicit dynamic finite element formulation. The LS-DYNA v970 code was used to perform the 

numerical pre-bend (and hydroforming) simulations. 

 

Figure 4.1 shows an illustration of the mesh used in the bend model for Rc/d = 2.5.  The 

model uses a half-symmetry shell-mesh, since the operation is symmetric about the bending 

plane.  Thin shell elements, with 28 integration points (four in-plane and seven through-

thickness), were used to model the tube geometry.  Rigid shell elements were used to discretise 

the geometry of the tools.  Beam elements and numerically formulated spherical joints were used 

to model the movement of the mandrel balls.  After the bend simulation, a static implicit 

springback simulation is performed on the tube.  An iterative approach was used to determine an 

angle to which the tube was bent such that the final included angle, after springback, was as 
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close as possible to 90º.  This precision was required for a good fit in the hydroform die for the 

secondary forming simulation. 
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Figure 4.1: FE mesh of the bend tooling and tube, for half-symmetry (Dyment [43]) 

(a) External geometry     (b) Internal geometry  
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The material-hardening characteristics of the tube were modeled with a power law 

equation.  The K and n values given in Section 2.2 (Table 2.1) were adopted in the FE models. 

 

In LS-DYNA, the contact between the tooling and the tube was modeled with the 

*CONTACT_FORMING_ONE_WAY_SURFACE_TO_SURFACE card.  This enforces a 

penalty function-based contact stiffness to prevent penetration of the tooling by the tube nodes.  

Prescribed Coulomb friction was used to model the friction between tools and tube.  The friction 

coefficients are summarized in Table 4.1.  An improvement on the friction modeling can be 

realized once on-going twist compression tests are completed on the tube and tool materials [39]. 

 

Contacting Surfaces Friction Coefficient 

Tube - Bend Die 0.06 

Tube - Pressure Die 0.25 (dry) 

Tube - Clamp Die 0.60 

Tube - Wiper Die 0.06 

Tube - Mandrel Body 0.06 

Tube - Mandrel Balls 0.06 

Table 4.1: Friction Coefficients in the FEA model for Rc/d = 2.5 

 

 

The tooling motion was modeled so as to be similar to the tool motion prescribed in the 

experiments.  Time scaling was adopted in the simulations, in which the tooling velocity was 

increased to reduce run-time, such that the total simulation time was 10 ms. Care was taken to 

avoid inertial effects. 

 

In the model, translational motion was prescribed for the mandrel assembly and the 

pressure die boost, using linear displacement control.  Similarly, for the bend die and clamp die, 
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angular displacement (rotational) motion was prescribed during the course of the bend.  For the 

pressure die clamping force, load control was prescribed in the +X-direction.  For every boost 

case (except NB100), the nodes at the back of the tube were given the same Z-direction 

translation as the pressure die.  This mimics the boost block and ensures no slip between the 

pressure die and tube.  For the NB100 case, the nodes were not given the same displacement as 

the pressure die, and the tube was pushed by friction with the pressure die alone, as in the actual 

NB100 experiments.  All the load curves shown below, for the FE bending, are for the ME100 

case, with Rc/d = 2.5. 

 

Between 0 and 2 ms, the pressure die closes on the tube, in the +X-direction, and 

maintains a clamping force of 66,700 N for the remainder of the bend (Figure 4.2).  As well, 

between 0 and 2 ms, the clamp die moves in the +X-direction and closes over the tube with 0.1 

mm over-close (Figure 4.3); this means that the clamp die closes 0.1 mm beyond the point where 

it just contacts the tube (the tube and clamp die are initially 1.0 mm apart).  The clamp die 

maintains this over-close for the remainder of the bend 

 

Figure 4.4 and 4.5 show displacement and velocity curves for the bend tooling motion.  

Starting at 2 ms, the clamp and bend die rotate together as one piece, counterclockwise, about the 

Y-axis, and the pressure die moves in the +Z-direction.  At the intermediate bend angle θ = 75º 

(at simulation time equal to 8.2 ms), the mandrel body starts to retract in the negative Z-direction 

reaching a final displacement of Z = -70 mm, at the end of the bend run-time of 10 ms (Figure 

4.6). This mandrel retraction is used to help “iron” out wrinkling due to bending, as used in the 

experiments. 
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Figure 4.2: Pressure die clamping force 
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Figure 4.3: Clamp die closing 
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Bend Tooling Displacement Curves
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Figure 4.4: Displacement curves for Pressure Die, Bend Die and Clamp Die 
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Bend Tooling Velocity Curves
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Figure 4.5: Velocity curves for Pressure Die, Bend Die and Clamp Die 
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Figure 4.6: Mandrel position 

 

Typically, in explicit dynamic models, a run time in the order of milliseconds (ms) is 

used.  This effectively speeds up the runs and greatly reduces computation time.  In so doing, 

artificial dynamic effects can be created, due to large workpiece and tooling velocities and 

accelerations, resulting in an overestimate of the tooling forces, predicted by the numerical 

models.  These artificial dynamic effects must be accounted for and controlled, to avoid un-

realistic vibration and “chattering” effects and an over-prediction of the tooling forces involved.  

The prescribed simulation time is 10 ms, roughly 1000 times faster than the real experimental 

time.  Ongoing studies by Dyment [43] and Bardelcik [39] are addressing proper control of 

inertial effects.  Further elaboration of the FE bend models, is presented by Dyment [43]. 
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4.2 FE Hydroforming Model 

 

A FE hydroforming model was developed that could accept pre-bend results from either 

the analytical or finite element pre-bend simulations.  In other words, the analytically calculated 

residual stresses, strains, and thickness values, were used as initialization values, for the pre-bent 

tube, prior to the secondary forming operation (consisting of die closing and hydroforming).  The 

FE-calculated residual stresses, strains, and thickness values, generated by the LS-DYNA 

bending and springback simulation, can also be used as initialization values prior to the same 

secondary forming operation.  These simulations were developed to allow comparison between 

the hydroforming predictions obtained from both pre-bend simulation approaches. 

 

In the numerical hydroforming operation, the die geometry consists of a teardrop 

shaped cross-section that is swept around the bend, as shown in Figure 4.7 and 4.8.  This die 

configuration allows the outside of the tube, which is the thinnest region after bending, to 

undergo the greatest expansion.  The same contact definition as in the numerical bend model is 

used in the hydroforming simulation, to enforce contact between the tube and hydroforming die.  

The Coulomb friction coefficient acting between the tube and die was prescribed as 0.08.  All of 

the load curves shown below, for the FE hydroforming, are for the ME100 pre-bend case, with 

Rc/d = 2.5 
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Figure 4.7: FE hydroforming half-symmetry geometry 

 

Figure 4.8: Cross-section of hydroforming die 
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The end plugs shown in Figure 4.7 are for illustration purposes only; in the actual 

simulation the end plugs were removed.  The difficulty in using the end plugs in the simulation is 

that the nature of the edge contact between plug and shell elements is poorly captured 

numerically.  To correct this, the end plugs were removed and replaced with a 60 kN nodal 

(sealing) force applied on the end nodes (matching the experimental sealing force applied to each 

end plug prior to hydroforming).  In addition, an initial internal restraining pressure of 1 MPa 

was applied on the tube elements located in the vicinity of the end plugs, on the straight region of 

the tube (Figure 4.9).  This sealing force plus 1 MPa pressure was applied simultaneously in the 

initial 1 ms of the hydroforming simulation.  The combination of pressure and sealing force is a 

good artificial means of preventing buckling of elements nearest to the nodes for which the nodal 

sealing force is applied.  Figure 4.10 shows the loading curves for the initial 1 ms. 
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Figure 4.9: Schematic of sealing force and elements to which 1 MPa pressure is applied, in initial 1 
ms 
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Figure 4.10: Initial sealing force and element-pressure curves 

 

During the initial 1 ms, the sealing force forces the tube to settle into the die, as in the 

experiments.  At the end of 1 ms, the 1 MPa pressure loading condition and the 60 kN nodal 

sealing force is replaced with internal pressure and displacement boundary conditions, as 

prescribed in the experiments.  For t ≥ 1 ms the nodes at the tube end are given a nodal 

displacement equal to the experimental end-feed displacements, for the plugs on the clamp and 

mandrel side.  The experimental measurements are from a representative ME100 case (starting at 

the experimental time of t = 0).  Additionally, for t ≥ 1 ms the internal pressure is ramped up 

using the experimentally measured pressure curve for the same ME100 case (again, starting at 

the experimental time of t = 0).  This allows for comparison between simulation and experiment.  

Figure 4.11 shows the experimental loading curves, used as model input, for t ≥ 1 ms. 
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Figure 4.11: Axial end-feed and internal pressure curves 
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Chapter 5- Results 

This chapter presents results from the bending experiments and models.  Both analytical 

and numerical (FEM) simulations of bending are presented and compared with experiments and 

each other.  Selected hydroforming experiments are also examined to demonstrate the 

effectiveness of combining analytical bend models with finite element (FE) models of 

hydroforming. 

 

5.1 Bending Strains and Thickness 

 

In the experiments, three boost cases were tested: LE95, ME100 and NB100 (for Rc/d = 

2.5), as summarized in Table 2.2.  A higher percent boost case could not be achieved in the 

experiments, but was modeled analytically and numerically.  This case was designated HE105, 

with a boost level of 105%.  The analytical predictions for the HE105 case can only be compared 

to the numerical (FE) results, since no experimental data is available for this higher boost case.  

Most of the bending comparisons in this chapter are for Rc/d = 2.5.  There is a brief comparison 

between models and experiment for a sharper bend, Rc/d = 2.0 with 100% boost, presented in 

Section 5.1.6. 
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All strain and thickness data was measured along the same regions shown in Figure 

2.10, after bending and hydroforming.  Note that measurements along the inside of the bend 

correspond to α* = 90º, and measurements on the outside correspond to α* = 270º. 

 

Table 5.1 summarizes the conditions during bending, including slip between tube and 

pressure die, and slip between tube and clamp die.  In the experiments, the slip was recorded 

after each test, and the average values are shown.  The transient slip over time was not recorded, 

only the final (total) slip at the end of the bend was recorded.  Table 5.1 also shows the measured 

percent boost, which is the actual boost maintained by the pressure die during the bend. 

 

  Average Experimental Results Numerical Results 

Boost Condition Clamp Die 
slip (mm) 

Pressure Die 
slip (mm) 

Measured 
Boost  
(%) 

Clamp Die 
slip (mm) 

Pressure Die 
slip (mm) 

Measured 
Boost     
(%) 

100% Boost (ME100) 0.6 0.0 99.6 0.1 0.0 100.0 
95% Boost (LE95) 1.2 0.0 95.4 0.1 0.0 95.0 
100% No Boost Block 
(NB100) 1.7 16.5 100.3 2.4 5.8 100.0 

Table 5.1: Slip and boost for experimental and numerical results 
 

 

If the pressure die slips relative to the tube, then its displacement in the Z-direction 

(Figure 2.5) is not representative of the actual travel of the tube, feeding into the bend.  

Therefore, in the presence of pressure die slip, one must calculate the “effective” boost based on 

the recorded (total) slip value.  This is discussed in detail in Appendix A.11. As it turns out, only 

the NB100 test case experienced tube slip relative to the pressure die.  There was 16.5 mm 

(average) relative slip between the tube and pressure die in the experiments; that is, the pressure 

die traveled 16.5 mm further than the back of the tube during bending.  Using the calculation 

method in Appendix A.11, the effective boost of the tube turned out to be ~94.5%.  Effectively, 

this boost level for the NB100 case is quite close to that for the LE95 case. 
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5.1.1 LE95 Boost Case 

 

Figure 5.1 plots the measured and predicted strains and thickness around the tube 

circumference at the θ* = 45º section in the middle of the bend (Figure 2.10).  The data shows the 

axial and hoop strains as well as the measured thickness.  The analytical predictions correspond 

to axial and hoop strains, and thickness (which the model outputs directly).  The experimental 

and numerical predictions, however, are of major and minor principal strains in the plane of the 

tube outer surface.  Away from the neutral axis, in the tensile region of the bend (roughly 180 – 

360º), the major strain will correspond to the axial strain while the minor strain corresponds to 

the hoop strain.  In the compressive region (roughly 0 – 180º), this correspondence is reversed.  

The distinct regions of strain are labeled as “axial” and “hoop”, as indicated in the figures. 

 

The greatest degree of error between analytical and experiment is in the transition 

region where axial and hoop strain change sign, as shown in an enlarged view in Figure 5.2 for 

the LE95 case.  In the experiments and numerically, the axial and hoop strain “jump” from one 

sign to the other.  In the analytical model the axial and hoop strain are made to pass through zero 

with a smooth transition.  Physically, the jump in strains is due to large shear strains present at 

the neutral axis, that are not accounted for in the analytical model.  In the regions away from the 

neutral axis, however, the analytical model compares well to both experiment and FE 

predictions, especially in the fully developed part of the bend where “steady” values of strain are 

reached in the longitudinal  (θ*) direction. 
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Figure 5.1: Strain and thickness comparison for LE95 at 45º location  
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Figure 5.2: Enlarged view of transition region for LE95 case 

 

 

Figure 5.3 and 5.4 show the strain distributions along the inside and outside of the bend 

region.  On the outside of the bend (Figure 5.4) there is a thickness “spike” or region of thinning 

outside of the bend region at roughly θ* = 92º.  This spike was attributed to excess clamping 

force exerted by the clamp die and is not captured by either model.  Strain measurements were 

only taken within the range 0 – 90º, and therefore do not exhibit a strain spike corresponding to 

the thickness spike. 

 

Overall, there is good agreement between the experimental and numerical curves, 

especially in capturing the trends within the bend region (in the θ* direction).  The analytical 
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model does capture the level of bending strain and thickness-change relatively well in the fully 

developed part of bend.  In the transition regions, where the thickness-change and strains decay 

to zero, the analytical model is empirically fit to match the decay seen in the numerical and 

experimental curves. 
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Figure 5.3: Strain and thickness comparison for LE95 on inside of bend 
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Figure 5.4: Strain and thickness comparison for LE95 on outside of bend 

 

The data plotted in Figure 5.1 – 5.4 corresponds to “average” curves based on 

experimental measurements from three different tubes.  The actual degree of scatter present in 

the data can be seen in Figure 5.5, which plots measurements from all three LE95 tubes.  From 

the figure, it can be seen that the level of scatter is roughly 5% strain.  The “average” curves are 

also plotted and are seen to capture the trends well. Only one tube for each boost case was 

measured for thickness, however, since the variation in thickness measurement between test-

samples is typically much less than for strains. 
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 Figure 5.5: Variation in experimental measurements taken around circumference. LE95 tubes. 

 

 

5.1.2 ME100 Boost Case 

 

Figure 5.6 shows the strain and thickness distribution at the middle of the bend (θ* = 

45º) for the ME100 boost case.  The agreement between the predictions from the analytical and 

numerical models, and experiment is superior to that seen for the LE95 case, especially in the 

tensile (positive) axial strain region (180 – 360º).  There is a downward “shift” in the axial strain 

relative to the LE95 case, and an upward shift in the thickness curve.  This shift is due to the 

Angle (α*)
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greater compressive axial membrane strain component, as boost increases.  The effect of boost 

level is discussed in greater detail in Section 5.1.5, below. 
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Figure 5.6: Strain and thickness comparison for ME100 at 45º location 

 

Figure 5.7 and 5.8 show strain and thickness distribution along the bend direction.  

Good agreement between experiment and models is shown.  A thickness spike does not appear in 

Figure 5.8 since the experimental measurements in this case was only taken from 0 – 90º.  An 

independent study, measuring strains, was performed in the clamp region of the tubes for the 

LE95, ME100, and NB100 boost cases and it was discovered that a strain spike indeed exists for 

both the LE95 and ME100 cases.  This spike is less profound for the NB100 case.  This defect is 

discussed in greater detail in a related study by Dyment [43]. 
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Figure 5.7: Strain and thickness comparison for ME100 on inside of bend 
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Figure 5.8: Strain and thickness comparison for ME100 on outside of bend 

 

5.1.3 HE105 Boost Case 

 

Figure 5.9, 5.10 and 5.11 show plots for the theoretical higher boost case of 105%, 

which could not be achieved experimentally.  There is very good agreement between the 

analytical and numerical curves, except in the transition region. The compressive membrane 

strain component is highest for this case, meaning that graphically the axial strain curves are 

shifted downward from the ME100 and LE95 cases, and the resulting thickness curves shift 

upward. 
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Figure 5.9: Strain and thickness comparison for HE105 at 45º location 
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Figure 5.10: Strain and thickness comparison for HE105 on inside of bend 
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Figure 5.11: Strain and thickness comparison for HE105 on outside of bend 

 

5.1.4 NB100 Boost Case 

 

Figure 5.12, 5.13 and 5.14 show plots for the 100% boost case with no boost block.  

The resulting strain and thickness distribution is quite similar to the LE95 case, which is 

expected since the effective boost experienced by the tube is very similar. Note that in the 

analytical model, the boost used to simulate the NB100 case was the effective boost of 95%. 
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Figure 5.12: Strain and thickness comparison for NB100 at 45º location 
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Figure 5.13: Strain and thickness comparison for NB100 on inside of bend 
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Figure 5.14: Strain and thickness comparison for NB100 on outside of bend 

 

 

5.1.5 Effect of Boost Level on Strain and Thickness Distributions  

 

Figure 5.15 and 5.16 show the strain and thickness distribution for different boost 

levels.  Figure 5.15 plots the experimental data while the analytical results are shown in Figure 

5.16.  In the experiments there is a clear trend, as boost level increases from 95% to 100% 

(Figure 5.15), the tensile axial strain component decreases resulting in a vertical shift of the 

curves.  Physically speaking, as boost level increases more material is “pushed” into the bend 

meaning greater compressive strain is induced resulting in reduced thinning on the outside of the 

bend.  Since the LE95 case and the NB100 result in similar boost levels, their curves are nearly 

identical.  The analytical curves (Figure 5.16), which include the 105% boost case as well, show 

Angle (θ*) 



 

 118

this shift in strain and thickness also.  Hoop strains appear to be minimally affected by a change 

in boost level. 
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Figure 5.15: Experimental trends over different boost levels 
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Figure 5.16: Analytical trends over different boost levels 

 

5.1.6 Effect of Rc/d Ratio 

 

A limited number of tests were performed with a smaller radius bend die, giving Rc/d = 

2.0.  Figure 5.17, 5.18, 5.19 show a plot of the strain and thickness values for the θ* = 45º 

location, and the inside and outside of the bend.  The figures shown are for a 100% boost case.  

Observing the graphs, one sees very good agreement between analytical, numerical and 

experimental results.  The largest errors in the analytical models occur in the transition zones at 

the ends of the bend region, suggesting that additional work is needed to model this transition 

more accurately. 
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Figure 5.17: Strain and thickness comparison for ME100 at 45º location 
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Figure 5.18: Strain and thickness comparison on inside of bend 
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Figure 5.19: Strain and thickness comparison on outside of bend 

 

 

Furthermore, it should be mentioned that the analytical assumption of constant hoop 

strain, in the tensile and compressive regions (from Chapter 3), is supported by the experimental 

and numerical curves, which exhibit relatively constant hoop strain on either side of the neutral 

axis. 

 

The effect of bend severity can be further examined by considering Figure 5.20 which 

shows analytical predictions for Rc/d = 2.5, 2.0, and 1.5, using the steel properties for DQAK and 

1.57 mm wall thickness.  The curves are for constant 100% boost, in order to show the effect of 
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bend radius change alone.  It is evident that as the bend radius decreases the magnitude of the 

axial strain, in the tensile and compressive regions, increases.  This is due to the increase in pure 

bending component of total strain.  The hoop strain shows only a small increase in magnitude 

with a decrease in bend radius. 

 

It is interesting to see that the greatest thickness-change is in the compressive region of 

the tube, especially with Rc/d = 1.5.  As it turns out, the 100% boost is high enough to introduce 

compressive membrane strain in all the different cases, but the smaller the bend radius, the 

greater the level of compressive membrane axial strain introduced. 
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Figure 5.20: Strain and thickness distribution for different Rc/d ratios 

 

Figure 5.21 shows the effect that changing Rc/d and percent boost has on the resulting 

strains and thickness on the outside of the bend, at α* = 270º. 
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Figure 5.21: Effect of varying percent boost and Rc/d 

 

Observing Figure 5.21 one can see that when changing Rc/d and percent boost, both 

have significant effect on the strain and thickness.  Over the range 1.5 ≤ Rc/d ≤ 2.5 the strains 

change roughly the same degree as when varying the percent boost from 95 to 105%.  The 

thickness however, is less affected by change in Rc/d and affected more by change in percent 

boost.  This is evident as one observes a relatively small increase in thickness from Rc/d  = 1.5 to 

2.5, as compared to a greater thickness-increase when increasing percent boost from 95 to 105%.  

Generally speaking, strains on the outside of the bend are equally affected by a change in percent 

boost and Rc/d, whereas thickness on the outside of bend is most affected by a change in percent 

boost. 
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5.2 Predicted and Measured Springback 

 

Table 5.2 summarizes the analytical predictions for the bend Rc angle and centerline 

bend radius, such that, after springback, the final bend angle of the bent tube is 90º, and the 

centerline bend radius satisfies the desired Rc/d ratio of 2.5.  For d = 76.2 mm, Rc = 190.5 mm.   

 

The predicted bend angle required to produce a 90º final bend did not vary significantly 

with boost level.  The predicted values (91.2-91.3º) agree reasonably well with the values used in 

the experiments. 

 

Boost Case Analytical Bend 

Angle (º) 

Analytical Bend 

Radius (mm) 

Experimental 

Bend Angle (º) 

LE95 91.3 188.0 90.9 

ME100 91.2 187.97 90.9 

HE105 91.1 188.08 N/A 

NB100* 91.3 188.0 90.9 

*Since effective boost is roughly the same as for LE95 the same percent boost is input into the analytical model 

Table 5.2: Analytical and experimental results for springback angle and centerline radius 

 

The predicted change in radius required to obtain a final Rc/d ratio of 2.5 is also in 

accord with the experiments.  For the Rc/d = 2.5 bend die, the actual centerline radius is roughly 

188.6 mm, which is close to the required centerline radii predicted by the analytical bend model.  

However, obtaining the exact bend radius after springback is not quite as important, for die 

fitting purposes, as is obtaining the correct bend angle after springback.  During the bending 

process, the tube ovalizes slightly, meaning that the radial clearance is 1 to 2 mm between the 

tube and the hydroforming die, on the inside and outside of the tube bend.  This clearance aids in 

seating of the tube into the die. 
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5.2.1 Residual Stresses 

 

Figure 5.22, 5.23 and 5.24 show the predicted stress distribution, before and after 

springback, as a function of distance from the tube centerline, for the three different boost cases 

(for Rc/d = 2.5).  The stresses calculated are at the mid-thickness of the tube, r = ro = 37.315 mm.  

The y-value lies in the range –37.315 ≤ y ≤ 37.315.  Plotted are the hoop and axial stress, before 

and after springback.  As mentioned in Chapter 3, the neutral axis corresponds to the line where 

strain (and stress) change sign from negative to positive. 
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Figure 5.22: Stress distribution for LE95 
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ME100
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Figure 5.23: Stress distribution for ME100 
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HE105
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Figure 5.24: Stress distribution for HE105 

 

 

Observing Figure 5.22, 5.23, and 5.24, as the level of boost increases, the stresses 

become more compressive, before and after springback.  In addition, the neutral axis shifts in 

accordance with the different boost conditions, from y ≈ –10, to y ≈ 0, to y ≈ 10 mm, roughly, 

for the LE95, ME100, and HE105 cases, respectively. 

 

5.3 Predicted Effective Plastic Strain and Thinning 

 

Effective plastic strain is often used as an indicator of the level of work-hardening and 

formability and a means to quantitatively analyze material behavior during a forming process.  

Effective plastic strain values above a critical value are also sometimes used as an indicator of 
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probable material failure.  Therefore, an important means to compare the analytical model to the 

numerical model is by comparing contour plots of effective plastic strain. 

 

Figure 5.25 shows the effective plastic strain for the Rc/d = 2.5, ME100 case, after 

bending.  Also of interest is the comparison of predicted wall thickness, shown in Figure 5.26 for 

the same cases. Observing Figure 5.25 and 5.26 one sees very similar distributions, both in 

magnitude and uniformity.  This good agreement was also found for the other boost cases, LE95, 

NB100, and HE105 (not shown). 

 

 

Figure 5.25: Contour plot showing predicted effective plastic strain for analytical (a) and numerical 
model (b) 

a 

b 



 

 130

 

 

Figure 5.26: Contour plot showing predicted thickness for analytical (a) and numerical model (b) 

 

 

5.4 Application to Aluminum Alloy Tubes 

 

As a final validation of the analytical model, simulation of the bending of aluminum 

alloy tubes was considered.  In this case, experimental data used in the validation was taken from 

a previous US/AMP (US Automotive Materials Partnership) study [10].  The comparison is 

along the circumference at the θ* = 45º location, as shown in Figure 5.27. 

a 
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Strain & Thickness Comparison for 102% Boost for 
Aluminum Alloy Tube

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0 60 120 180 240 300 360

Angle (º)

En
g.

 S
tr

ai
n

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Th
ic

kn
es

s 
(m

m
)

Experiment Analytical

thickness

hoop strain
axial strain

 

Figure 5.27: Strain and thickness comparison for aluminum tube at 45º location 

 

This figure also shows good agreement between the experiment and model.  The 

available experimental data is taken from the measurement of one tube.  Note that the 

comparison is for a 3.5 mm thick Al-3.5%Mg tube.  Further details of the tubes and experiments 

are given in [10]. 

 

The analytical model also did a reasonable job of predicting the necessary pre-

springback bend angle, of 92.7º, to account for springback.  In the experiments the necessary 

bend angle was determined to be 91.9º [10]. 
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5.5 Run-time Comparison 

 

For a single bend the analytical model takes 10-15 seconds to run on a 2.4 GHz Pentium 

IV processor, compared to roughly 2 hours for the FEM simulation on the same computer.  This 

very fast run-time of 10-15 seconds corresponds to a given prescribed percent boost.  If the 

model is given a prescribed boost force, the run time takes roughly 60-70 seconds for a single 

bend, since the calculations become more elaborate, as described in Chapter 3. 

 

5.6 Application to Hydroforming 

 

The previous sections of this chapter have served to provide an assessment of the 

analytical bend predictions.  In this section, results are presented from the application of the 

analytical bending predictions in the simulation of a subsequent hydroforming operation.  In this 

case, models of the ME100 case were developed, in which the as-bent tube was hydroformed 

using the outside corner-fill die, described in Section 2.5.  For comparison purposes, 

hydroforming simulations were performed using bending predictions from both the analytical 

and the finite element (FE) models.  The hydroforming predictions are then compared to one 

another, as well as to measured data for strain and thickness distribution, and corner expansion 

versus pressure. 

 

The available measured strain and thickness data after hydroforming comes from a 

single representative tube sample.  Due to time constraints, additional tubes could not be 

measured to obtain good average values, or ascertain the degree of scatter.  It is expected, 

however, that the data lie within an error of 5% for strains, as for the bending measurements.  

Ongoing work by Dyment [43] will assess the hydroformability of these pre-bent tubes. 
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5.6.1 Predicted strains after hydroforming 

 

Figure 5.28 shows predicted contours of effective plastic strain from the hydroforming 

FE models based on the analytical and numerical pre-bend, respectively.  High levels of strain 

are seen on the outside of the bend, which is the region where the corner-fill deformation takes 

place.  One can see very similar strain distributions for the two cases. 

 

Contours of predicted percent thickness reduction are plotted in Figure 5.29.  The good 

agreement seen again, suggests that the analytical predictions are in good accord with the FE 

models for bending. 
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Figure 5.28: Contour plot showing predicted effective plastic strain in FE hydroforming for the 
analytical pre-bend (a) and numerical pre-bend (b) 

 

a 

b 
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Figure 5.29: Contour plot showing predicted percent thickness reduction for analytical pre-bend (a) 
and numerical pre-bend (b) 

 

Figure 5.30 shows the measured and predicted strain distributions in the hydroformed 

tubes, for the ME100 case.  In general, the predicted distributions show two features that differ 

from the as-bent condition (Figure 5.6).  First, in both FE predictions, there is a localization of 

strain in the hoop direction in the α* = 240 – 300º region of the tube (corresponding to the 

outside region of bend).  The two strain peaks correspond to localization of strain at the points of 

tangency with the corner fill region of the die (see Figure 5.31).  The tangency point is defined as 

the point of intersection of the tube wall, the open die space, and the die wall, as shown in Figure 

5.32.  There is also an increase in hoop strain on the inside of the bend (60º < α* < 120º).  This 

a 

b 
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increase is due to lift-off of the tube from the die along the inside of the bend, as seen in the 

numerical prediction shown in Figure 5.33.  The “lift-off” of the inside of the tube due to the 

force of the end seals.  The end plungers have a conical profile that wedge against the tube wall 

(Figure 2.9), producing a metal-on-metal high-pressure seal.  This wedging action also creates a 

high axial force on the tube ends, which pushes the tube into the outside of the die as illustrated 

in Figure 5.33.  A gap forms on the inside of the bend, which eliminates contact friction with the 

die and results in the large hoop strains at the 90º region of the section, shown in Figure 5.30 for 

experiment.  This effect is much more pronounced in the experimental data than in the FE data, 

which suggests that the model does not capture the end seal boundary condition (causing lift-off) 

particularly well.  The loss of support of the die causes the tube to expand circumferentially with 

an increase in hoop strain.  This increase can be seen in Figure 5.34, which plots the measured 

strains after bending and after hydroforming.  The increase in hoop strain for 60º < α* < 120º is 

evident, however there is no evidence of localization at the outside of the tube 

(240º < α* < 300º).  This differs from the change in predicted strains in Figure 5.35, which 

shows sharp peaks on the outside of the tube. 
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Figure 5.30: Strain and thickness comparison for analytic and numerical pre-bend, with 
experiment,  at 45º location 
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Figure 5.31: Location of maximum effective plastic strain at tangency point 
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Figure 5.32: Tangency point on hydroformed tube 
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Figure 5.33: Tube lift-off in hydroforming die 
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Figure 5.34: Experimental pre-bend and hydroforming 
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Figure 5.35: Numerical pre-bend and hydroforming 

 

The lack of an evident localization peak in the experimental data is attributed to the 

actual failure in the experiment not occurring at the center of the bend.  Instead the tubes failed 

prematurely at the clamp region, the region of local thinning during bending (Figure 5.37).  

Figure 5.36 is a photograph of a failed hydroform sample, which shows failure in the θ* = 92º 

region. 

 

Figure 5.38 shows the strain and thickness distribution along the outside of the bend 

after hydroforming.  The FE hydroforming predictions based on the two bend models, analytic 

and numerical, agree very well.  The predictions show transient regions at the start and stop of 

Angle (α*) 
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the bend and a “near steady-state” between roughly 20 – 70º.  The experimental strain and 

thickness levels are close to the model predictions in the middle of the bend (θ* = 45º).  There is 

a dramatic peak in the axial strain and thickness on the outside of the bend region (90 – 100º), 

corresponding to the same peak in the post-bending strains and thickness.  As mentioned, this 

peak was unexpected and led to the bursting failure at the clamp end of the tube. 

 

  

Figure 5.36: Failed tube sample 
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Figure 5.37: Failure region in tube after hydroforming 
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Figure 5.38: Strain and thickness comparison for analytic and numerical pre-bend, on outside 
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5.6.2 Pressure vs. Corner-fill Expansion 

 

Figure 5.39 shows the corner-expansion versus pressure data for the models and 

experiment, for the ME100 case.  The expansion is measured at θ* = 45º and α* = 270º.  The 

experimental data is for a single representative tube sample, hydroformed to burst. 

 

The measured data lies between the predictions based on the two bend models.  The 

analytical pre-bend leads to an over-prediction of the expansion, while the numerical pre-bend 

gives an under-prediction, as compared to experiment.  The general shape of the curves are in 

reasonable agreement, however further effort is required to refine the current hydroforming 

predictions. 
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Figure 5.39: Corner expansion for ME100 
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Chapter 6- Discussion 

 

The analytical bend model proves to be a very useful tool for approximating the tube 

bending process, as well as for predicting approximate bend parameters such as pressure die 

boost force, pre-springback bend angle, and minimum tube stock length for bending.  This 

information can be quite useful for initial design studies, that can be further refined in accuracy 

through subsequent experimental or detailed FEA studies. 

 

Another useful feature of the bend model, not studied in detail here, is its 

accommodation of bends in three-dimensions.  This feature is attractive when one attempts to 

model multiple bends in complex parts; such models can take a great deal of time to set up in an 

FEA model, as well as requiring a much longer run time. 

 

The analytical model compares well with experiment and FE predictions, and captures 

trends well, such as the decrease in axial strain due to increased boost levels.  The analytical and 

FE pre-bend models also prove to result in similar hydroforming predictions of strains and 

thickness.  When comparing the hydroforming simulations, using the analytical and numerical 
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pre-bend predictions, the analytical pre-bend model is of equal value to the numerical pre-bend 

model. 

 

A clear shortcoming in the analytical and numerical modeling is the isotropic material 

assumption.  There is a need to account for anisotropy such as the r-value effects present in steel 

and aluminum tubes that control rate of thinning.  As shown in the tensile measurements in the 3, 

6, and 9 o’clock positions, there is a difference in the stress-strain curves.  Although small, these 

differences are indicative of variation in the as-received tube; however it is likely that the effect 

of these differences is small.  Also, the influence of the weld seam on the material properties was 

not taken into account.  Since the weld seam was oriented to lie close to the neutral axis, its 

effect is also thought to be small. 

 

It is also the case that friction conditions weren’t well represented in the models, 

especially in the analytical bend model.  Estimated friction coefficients were used in the 

numerical FE model input, but the effect of friction on strain distribution and on tooling loads is 

neglected in the analytical models.  Ongoing work by Bardelcik [39] seeks to determine 

improved friction coefficients. 

 

As it turns out, friction mostly affects the external moments and forces required to bend 

a tube.  For example, prescribed percent boost, bend angle, and net boost force are boundary 

conditions directly affecting the deformation of the tube, and thus affect the strains and thickness 

almost entirely independent of frictional affects. Therefore, neglecting friction in the analytical 

model is quite reasonable. 

 

The premature failures that occur during hydroforming were caused by problems in the 

bend process settings.  This problem was resolved by reducing the clamp die force.  The 
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analytical model neglects this level of detail and is likely only useful in well-controlled 

processes. 
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Chapter 7- Conclusions and Future Work 

7.1 Conclusions 

 

The following conclusions are drawn for the experimental and modeling investigations. 

 

Experiments: 

 

1. Boost conditions, such as low, medium and high, are primary factors affecting the final 

tube strains and thickness after bending, for a given tube size diameter and Rc/d ratio. 

 

2. Excessive clamp die pressure risks inducing a material weak point and premature failure 

in the hydroforming operation. 

 

Analytical and numerical bend models: 

 

1. The analytical bend model provided strain and thickness predictions in good accord with 

the experimental and numerical results, at a computation time that is three orders of 

magnitude less than the numerical FE model. 
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2. The analytical model can be used in engineering design studies as an alternative to a 

more detailed, much more time consuming FE model. 

 

3. Friction conditions in the experiments are poorly modeled in the numerical simulations 

and neglected entirely in the analytical model.  

 

7.2 Future Work 

 

The following recommendations for future work stem from the results of this thesis: 

 

1. Further improvements should be made to the existing analytical bend model, such as: 

• accounting for material anisotropy 

• accounting for non-uniform percent boost and boost force 

• accommodating initial small variations in original tube wall thickness, as a function of 

circumferential angle 

• improve residual stress calculations to better approximate static equilibrium after 

springback.  

 

2. Improve friction modeling in the numerical models.  To facilitate this, work is underway 

to gather more accurate friction data from twist compression tests. 

 

3. Increase the available boost force in the tube bender to accommodate higher boost levels 

in future experimental bending trials. 

 

4. Set up an apparatus to measure relative slip between the pressure die and tube as a 

function of time during bending, as a means to better understand transient slip behavior 

and to provide better validation data. 
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Appendix A – Details of the Analytical Bend Model 

 

This appendix outlines the more detailed mathematical formulations of the analytical bend 

model, which are not covered in Chapter 3. 

 

A.1 - Numerical Procedure for Solving Hoop Strain 

 

From Chapter 3, equations (3.9) – (3.12) were introduced as a mathematical means to 

approximate hoop strain: 

1 1 2
1 1( )

2
a a

a
sE

ε σ σ= ⋅ −  

2 2 1
1 1ln(1 ) ( )

2
a a

a
a s

m
L E

ε σ σ= + = ⋅ −  

1 1 2
1 1( )

2
b b

b
sE

ε σ σ= ⋅ −  

2 2 1
1 1ln(1 ) ( )

2
b b

b
b s

m
L E

ε σ σ= − = ⋅ −  

 

Substituting the expressions, discussed earlier, for 1
aε , 1

bε , a
sE , b

sE , La, Lb, one can solve 

for m in (3.9) – (3.12).  The numerical technique used to solve these is the Bisection Method and 

is applied as follows. 

 

First bound 2σ , 1
aσ  and 1

bσ , knowing that the solution must lie within certain bounds.  

Since the tube material is treated as isotropic, the effective von-Mises stress formulation is used, 

for plane stress, 
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2 2
1 1 2 2effσ σ σ σ σ= − ⋅ +                                                                                          (A.1) 

 

Now, let us look at a “worst case” where the stresses are quite high for a plane strain 

condition where εhoop = 0.  This means that 2 1
1
2

σ σ= .  Substituting this into the expression for 

σeff one can solve for 1σ . Therefore, solving one obtains 1
2
3 effσ σ= ± .  Now, this is not an 

expression for 2σ , but since 1| |σ  > 2| |σ  then let us use 2
2| |
3 effσ σ= as an upper and lower 

bound for 2σ , without being so large that σeff is exceeded.  Treating σeff as a constant, and setting 

max effσ σ≡ , its value is chosen to be large and a suitable upper bound. 

 

In the case of a given power law expression, ( )pl n
eff eff ypKσ ε ε= ⋅ + , one sets 

max (1.0)nKσ = ⋅ which is for a strain of 1.0, clearly an upper bound.  Given a flow curve, maxσ  is 

the value corresponding to the largest strain. 

 

As a result, one can now write the upper and lower bound for σ2. 

max2

max2

2
3

2
3

lower

upper

σ σ

σ σ

= −

=
   (A.2) 

 

Let’s consider now the upper and lower bounds for 1
aσ and 1

bσ .  For 1
aσ  look first at the 

lower bound.  This can be deduced by using a lower bound value for a
sE  in (3.9).  One can 
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choose this lower bound to be 
max

yielda
sE

σ
ε

= , where εmax is εmax = 1.0, or εmax is the largest strain 

value in the flow curve.  Therefore, solving for 1σ  in (3.9), one obtains  

1 1 2
max

1
2

yielda aσ
σ ε σ

ε
= ⋅ +   (A.3) 

 

Since 1
aε  < 0, this value for 1

aσ  becomes a lower bound when 2
upperσ  and 2

lowerσ is 

substituted for 2σ . 

For an upper bound for 1
aσ  substitute 2

upperσ  and 2
lowerσ , for 2σ , into 

2 2
max 1 1 2 2σ σ σ σ σ= − ⋅ + and solve for 1σ , calling it 1

aσ .  One obtains (rejecting the positive 

root) 

2 2
max1 2 2

3 1
4 2

aσ σ σ σ= − − +            (A.4)   

Using the same methodology for 1
bσ , one obtains 

1 1 2
max

1
2

yieldb bσ
σ ε σ

ε
= ⋅ +                                                                                                   (A.5) 

which becomes an upper bound when 2
upperσ  and 2

lowerσ is substituted for 2σ  (since 1
bε  > 0).  As 

before, but rejecting the negative root, 

2 2
max1 2 2

3 1
4 2

bσ σ σ σ= − +                                                                                        (A.6) 

and this becomes a lower bound when 2
upperσ  and 2

lowerσ is substituted for 2σ . 
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A.2 - Application of Bisection Method for Hoop Strain Calculation 

 

The Bisection method is an iterative technique to solve a function based on a lower 

bound, upper bound and a midpoint value [49].  To illustrate consider Figure A.1: 

x

y y=f(x)

(a,f(a))

(b,f(b))

(c,f(c))

 

Figure A.1: Illustration of bisection method for a function y = f(x) 

 

Here, a represents an upper bound guess, and b a lower bound guess. c is the midpoint 

of a and b, 
2

a bc += .  Also, a and b must be such that y(a) > 0 and y(b) < 0 or vice versa. 

There is a point p such that y(p) = 0.  By progressively marching through an iteration 

scheme the point c gets closer and closer to the exact value p, so that after a sufficient number of 

iterations one achieves a very good approximation for p. 

 

Given two initial guesses for upper and lower bound, call them a1 and b1, one calculates 

1 1
1 2

a bc += .  With these starting values calculated, one can now write the remainder of the 

method in a mathematical way. 

 

For 1 ≤ i ≤ N, N sufficiently large for convergence, apply the following: 
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If f(ci) < 0 and f(ai) > 0, set ai+1 = ai and bi+1 = ci 

If f(ci) < 0 and f(bi) > 0, set ai+1 = ci and bi+1 = bi 

If f(ci) > 0 and f(bi) < 0, set ai+1 = ci and bi+1 = bi 

If f(ci) > 0 and f(ai) < 0, set ai+1 = ai and bi+1 = ci 

and repeat N times, with the result f(cN) ≅ 0, where cN is approximately the solution. 

 

To solve for m in (3.9) – (3.12), one first divides up the problem so that one solves 

(3.9), (3.10) for m ≡ m1, and solves (3.11), (3.12) for m ≡ m2; then various values of 2σ  are 

“marched” through until m1 ≅ m2 (compatibility), which allows us to find the engineering hoop 

strain easily. 

 

With the known quantities: 1
aε , 1

bε , a
sE , b

sE , La, Lb; one can then proceed to solve for m.  

Key mathematical terms can be written as follows: 

Set 

 

1 1 1 1 2 1

2 2 1 1 2 1

3 3 2 1 2

1 1( ) ( )
2

1 1( ) ( )
2

( )

a a a
a
s

b b b
b
s

y f
E

y f
E

y f m m

σ σ σ ε

σ σ σ ε

σ

= = ⋅ − −

= = ⋅ − −

= = −

                                                                            (A.7) 

 

To start the iteration, to solve for m1, set a11 = 1
aσ  from (A.3) and set b11 = 1

aσ  from 

(A.4) (to set an upper and lower bound), and calculate midpoint c11.  To start the iteration, to 

solve for m2, set a12 = 1
bσ  from (A.5) and set b12 = 1

bσ  from (A.6) (to set an upper and lower 

bound), and calculate midpoint c12.   

 

Using slightly different notation from before, define the algorithm to solve for m1: 
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{ If f1(ci1) < 0 and f1(ai1) > 0, set a(i+1)1 = ai1 and b(i+1)1 = ci1 

   If f1(ci1) < 0 and f1(bi1) > 0, set a(i+1)1 = ci1 and b(i+1)1 = bi1 

   If f1(ci1) > 0 and f1(bi1) < 0, set a(i+1)1 = ci1 and b(i+1)1 = bi1 

   If f1(ci1) > 0 and f1(ai1) < 0, set a(i+1)1 = ai1 and b(i+1)1 = ci1 } (A) 

repeat this N1 times until convergence, for 1 ≤ i ≤ N1 to solve for m ≡ m1 

 

Similarly for m2: 

 

{ If f2(ci2) < 0 and f2(ai2) > 0, set a(i+1)2 = ai2 and b(i+1)2 = ci2 

   If f2(ci2) < 0 and f2(bi2) > 0, set a(i+1)2 = ci2 and b(i+1)2 = bi2 

   If f2(ci2) > 0 and f2(bi2) < 0, set a(i+1)2 = ci2 and b(i+1)2 = bi2 

   If f2(ci2) > 0 and f2(ai2) < 0, set a(i+1)2 = ai2 and b(i+1)2 = ci2 } (B) 

repeat this N1 times until convergence, for 1 ≤ i ≤ N1 to solve for m ≡ m2. 

 

Note that (A) and (B) are for a given value of 2σ .  The value of 2σ  must be such that 

m1 = m2 (compatibility).  So, to solve for 2σ  one uses the bisection algorithm again.  Basically 

two bisection algorithms, (A) and (B), are nested inside a main bisection algorithm, call it (C).  

(A) and (B) are executed inside (C) each N1 times (for each single value of 2σ ) and then 

3 3 2 1 2( )y f m mσ= = − is calculated. 

 

For (C), the iteration must be started off by setting a13 = 2
lowerσ , setting b13 = 2

upperσ , and 

calculating the midpoint c13.  As before, let’s now define (C): 

 

 

 



 

 162

{If f3(ci3) < 0 and f3(ai3) > 0, set a(i+1)3 = ai3 and b(i+1)3 = ci3 

   If f3(ci3) < 0 and f3(bi3) > 0, set a(i+1)3 = ci3 and b(i+1)3 = bi3 

   If f3(ci3) > 0 and f3(bi3) < 0, set a(i+1)3 = ci3 and b(i+1)3 = bi3 

   If f3(ci3) > 0 and f3(ai3) < 0, set a(i+1)3 = ai3 and b(i+1)3 = ci3 } (C) 
and this is repeated N2 times until convergence, for 1 ≤ i ≤ N2, to solve for 2σ  such that m ≅ m1 ≅ 

m2. 

 

Therefore, one can now calculate εhoop directly with the expressions from before 

,
2
a eng

a

m
L

ε =  

and 

,
2
b eng

b

m
L

ε = −  

 

Then the final result is, 
,

2

,
2

, 0

,

b eng
NA

hoop a eng
NA

f for

f for

ε α α
ε

ε α α π
⎧ ⎫⋅ ≤ ≤⎪ ⎪= ⎨ ⎬

⋅ ≤ ≤⎪ ⎪⎩ ⎭
 

 

A.3 - Calculation of upper and lower bound value for lb 

 

The initial bounds of lb (to calculate Fboost), as mentioned earlier, are not trivial to 

calculate.  The bounds are such that the axial strains (over –d/2 ≤ y ≤ d/2) are entirely 

compressive or entirely tensile, in a borderline sense.  This means that the upper bound for lb, a 

positive value (corresponding to Fboost < 0), must be such that 1ε  ≤ 0 everywhere, and εmax ≈ 0 at 

y = d/2.  In other words, the compressive “push” force Fboost is high enough so that the induced 

positive membrane strain e(α=0) cancels out the maximum tensile strain created by pure 
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bending, at y = d/2.  The lower bound for lb, a negative value (corresponding to Fboost > 0), must 

be such that 1ε  ≥ 0 everywhere in the local coordinate system, and εmin ≈ 0 at y = -d/2.  In other 

words, the tensile “pull” force Fboost is high enough so that the induced negative membrane strain 

e(α=π) cancels out the maximum compressive strain created by pure bending, at y  = -d/2.  

 

These limits for lb bound the problem nicely, and are quite reasonable since at the upper 

bound of lb one is, in reality, risking serious wrinkling on the inside of the tube.  In contrast, at 

the lower bound of lb one is risking tensile fracture on the outside of the tube due to excessive 

stretching of material.  Thus it is impractical and unrealistic to accommodate the model to 

account for a boost force Fboost, which would push the axial strain outside the allowed bounds. 

 

Therefore, one can solve for the upper bound of lb, from (3.19), by setting y = ro, and 

setting 

ln 1
c

y Ae
R A

α
⎛ ⎞+= − +⎜ ⎟−⎝ ⎠

( = 0)                                                                              (A.8) 

One can then solve for lb from the volume conservation equation (3.27) shown earlier 

(at α=0). 

To solve for the lower bound of lb one sets y = -ro, and set 

ln 1
c

y Ae
R A

α π
⎛ ⎞+= − +⎜ ⎟−⎝ ⎠

( = )                                                                              (A.9) 

and again using the volume conservation equation one can solve for lb (at α=π). 

 

As a side-note, it is interesting to mention that, as the axial strain approaches a fully 

tensile or compressive value over the tube cross-section, the hoop strain calculated, by the 

model, approaches zero.  Physically this makes sense since every element in the cross-section is 

either “pushing” or “pulling” against each other in the hoop direction.  This results in much less 
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hoop straining than if some elements were “pulling” and others “pushing”, in the hoop direction, 

as is the case in a regime with axial compression and tension regions.  So based on this 

observation one can speculate that there is no (or very little) hoop straining when the axial strain 

regime is fully tensile or fully compressive. 

 

A.4 - Mesh Generation 

 

The program user enters geometric data for the tube such as the length of the straight 

regions, the centerline bend radii, bend angle, and tube rotation.  The shell mesh is generated so 

as to keep the aspect ratio as close to one as possible. 

 

To clearly illustrate this consider the following step-by-step illustration for a tube with 

four distinct, non-coplanar bends, in Figure A.2.   
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Figure A.2: Final configuration of bent tube with four bend regions 

 

In the final finite element mesh the nodal coordinates, of each distinct region, is 

calculated from a set of transformations performed on the finite element mesh of each distinct 

region, in its original orientation (Figure A.3).  To illustrate, let’s consider an arbitrary region k 

in its original orientation, relative to the global Cartesian axes. 

X Y 

Z 
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θk,bend

Rk

lk 

lk+1 

X 

Z 

Y 
βk 

This top straight region 
only applies to 
k=1 (the first straight 
region) 

 

Figure A.3: Region k shown, in original configuration 

 

Rk and θk ( > 0) correspond to the centerline radius and the bend angle (about Y axis, 

normal to page) after springback, that is, the desired final geometry.  lk, lk+1 is the straight region 

length and βk is the tube rotation about the Z axis following the (positive or negative) sign 

convention according to the right hand rule.  Note that for bends all in one plane βk = ±180°.   

 

Also, the coordinates of the nodes in the original configuration are denoted as 

(Xo,Yo,Zo).  From a physical perspective, βk is a Z-rotation performed on the tube after a single 

bend of centerline radius Rk, at an angle θk,bend and translation in the positive Z-direction a 

distance lk+1 . 

 

For example, let’s look at the transformations Tk needed for each region k in a bent tube 

with 4 bend regions (1 ≤ k ≤ N) such that the final nodal coordinates (for those regions) 
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correspond to the final configuration shown in Figure A.2.  Note that for N bend regions there 

are N+1 straight regions. 

 

Region 1: The original configuration corresponds to k = 1.  This region has the most 

transformations.  Each transformation group consists of (in order) a Z-rotation β, a Y-rotation 

θbend and a Z-translation by a positive distance l. The final configuration (orientation) for region 

1 is a result of 3 consecutive transformations of this sort. 

 

For convenience, call each transformation group Gi where 1 ≤ i ≤ N-1. 

 

Now, 

 

1 1 1

1 1 1

1
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1 1
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o
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X
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Zo a Ro X R Z
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θ β
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θ

θ θ

θ θ

θ

+ +

+ +

+
+

= +
= +
=

⎛ ⎞
= = +⎜ ⎟

⎝ ⎠
= − −

=
= − +

⎛ ⎞
= = + +⎜ ⎟+⎝ ⎠

 (A.10) 

 

Now, 

{ }1 1 2 3, ,T G G G= , and for G2 and G3 the (Xo,Yo,Zo) values are set to the (X2,Y2,Z2) values from the 

previous G operation.  For G1 the (Xo,Yo,Zo) values are from the original configuration as shown 

in Figure A.3.  Note that for region 1, and only for region 1, the original (Xo,Yo,Zo) values 

correspond to the bend region R1 and the two straight regions l1 and l2 . 
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Similarly, { }2 2 3,T G G= , the original (Xo,Yo,Zo) values correspond to the bend region R2 

and the one straight region l3.  The (Xo,Yo,Zo) values for G3 correspond to the (X2,Y2,Z2) values 

from the previous G2. 

 

{ }3 3T G= , and the original (Xo,Yo,Zo) values correspond to the bend region R3 and the 

straight region l4. 

 

The last region, defined by R4 and l5, requires no transformation and stays in the 

original orientation. 

 

So, to generalize for a tube with N bend regions, for each region k, with 1 ≤ k ≤ N-1: 

{ }1 1, ,...,k k k NT G G G+ −= , where the G operations are performed in order from Gk to GN-1, and the 

transformation (TK) is performed on the nodal coordinates on the finite element tube mesh in the 

original configuration (orientation) as shown in Figure A.3, to give the final configuration, as 

shown in Figure A.2. For each of Gk+1,…,GN-1 the (Xo,Yo,Zo) values are taken from the 

(X2,Y2,Z2) values from the previous G operation.  For Gk the (Xo,Yo,Zo) values are from the 

original tube configuration. 

 

 

A.5 - Stress and Strain Transformation 

 

To transform the stresses and strains, in the local coordinate frame, to the corresponding 

stresses and strains in the global reference frame (as required for LS-DYNA input) one needs 

direction cosines. From the 4 nodal coordinates (in the final configuration) for each shell element 

it is simple to calculate the three normals in the 1, 2, and 3 directions (aligned with the 

local 1 2 3x x x  reference frame).  These nodal coordinates are relative to the global reference frame, 
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therefore the direction cosines will be relative to the global reference frame.  Let’s call these 

direction normals n1 = (l1, m1, n1), n2 = (l2, m2, n2), n3 = (l3, m3, n3).  

 

To calculate the residual stresses and strains in the global reference frame one needs the 

direction cosines of the global reference frame relative to the local reference frame.  These 

direction cosines are then N1 = (L1, M1, N1), N2 = (L2, M2, N2), N3 = (L3, M3, N3), where L1 = l1, 

M1 = l2, N1 = l3, L2 = m1, M2 = m2, N2 = m3, L3 = n1, M3 = n2, N3 = n3.  See Figure A.4. 

 

Therefore, the residual stresses in the global frame are [50]: 

2 2
1 1 2 1

2 2
1 2 2 2

2 2
1 3 2 3

1 1 2 2 1 2

1 1 3 2 1 3

1 2 3 2 2 3

res res
XX

res res
YY
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g res res
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g res res
XZ

g res res
YZ

L M

L M

L M

L L M M

L L M M

L L M M

σ σ σ
σ σ σ
σ σ σ
σ σ σ
σ σ σ
σ σ σ

= ⋅ + ⋅

= ⋅ + ⋅

= ⋅ + ⋅

= ⋅ ⋅ + ⋅ ⋅

= ⋅ ⋅ + ⋅ ⋅

= ⋅ ⋅ + ⋅ ⋅

  (A.11) 

 
 

The strains in the global frame are [50]: 

 
2 2 2

1 1 2 1 3 1
2 2 2

1 2 2 2 3 2

2 2 2
1 3 2 3 3 3

1 1 2 2 1 2 3 1 2

1 1 3 2 1 3 3 1 3

1 2 3 2 2 3 3 2 3
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g
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g
XZ
g
YZ

L M N

L M N

L M N

L L M M N N

L L M M N N

L L M M N N

ε ε ε ε
ε ε ε ε
ε ε ε ε
ε ε ε ε
ε ε ε ε
ε ε ε ε

= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅

= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅

= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅

= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅

  (A.12) 

 

The residual stresses and strains are calculated for each integration point.  For stresses, 

the program user has the option of selecting calculations to be performed on 7 or 28 integration 
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points, for each shell element.  For each shell element the strains are calculated at 2 points - the 

inner integration point and the outer integration point (ip1 = -0.9491, ip7  = 0.9491), at the 

element center, as used by LS-DYNA. The N1, N2, N3 surface normals are constant over the shell 

element and for each integration point in the shell, with no accounting for the slight variation due 

to curvature, which is very small anyway over the tiny shell element. 

 

  

N 1   

n3 n 2   

n1

N2

N 3   

 

Figure A.4: Direction cosines for global and local coordinate systems 

 

Figure A.5 shows the general stress state on an infinitesimal cube of material in a Cartesian 

system 1 2 3X X X .  Note that the strains εij, act in the same direction as the stresses σij. 
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 X3 

 

Figure A.5: General stress state for an element cube 

 

A.6 – Location of Integration Points 

 

The seven through-thickness integration points (ip) are defined to lie on a normal to the 

plane of the shell element (at the center).  Their location can be calculated by simply choosing 

the correct radial distance r; since r by its definition coincides with the shell normal at the center 

of the shell plane (xo, yo, zo).  Therefore, 

int 2pt o
tnewr r ip= + ⋅   (A.13) 

where 
2 2o
d tr = −  and is the midsurface radius, 

and { .9491, .7415, .4058, 0, .4058, .7415, .9491}ip ∈ − − −  

For 28 integration points, each of the seven through-thickness planes (at the location of 

the seven ip), contains 4 in-plane integration points.  For 7 integration points, each plane contains 

one point at the center of the plane (Figure A.6). 
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ro, α 

tnew 

ip7 
ip6 
ip5 
ip4 
ip3 
ip2 
ip1 

 

Figure A.6: Tube shell element shown, with 7 through-thickness integration points * 

 

A.7 – Decay Formulation 

 

Stresses, strains and change in wall thickness, decay from fully developed values to the 

"zero" condition corresponding to the un-deformed state.  This decay starts in the bend region 

near the ends of the bend (Figure A.7), and continues into the straight section until the zero 

condition is reached.  The nature of the decay is a function of the bending conditions and tooling 

contact, similar to the end effects on piping networks discussed in the literature review.  Based 

on experimental and numerical results, for Rc/d = 2.5, decay angles are approximated as 7.5° 

from each end, and independent of bend angle θ. 

 

 

 

                                                 
* For 28 integration points there are 4 points in the same plane as each of the 7 points, at the parametric coordinates 

1 1( , )
3 3

± ±  following the order defined by the right hand rule, with the shell normal. 
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Mandrel Side 

Clamp Side

7.5º 

7.5º

E
F

A

B

C

D

G H 

θ 

θ*s

s

 

Figure A.7: Regions of stress, strain, and wall thickness decay for a 90º bend angle 

 

Exponential functions are used to treat the decay in stresses, strains and change in wall 

thickness, inside the regions ABCD & EFGH, starting from the bands AB & EF, respectively.  In 

the region ABEF, the stresses, strains (in local 1 2 3x x x ) and wall thickness are uniform along θ.  In 

other words, there is no gradient in the θ direction (∂/∂θ = 0) in this region, where the bend is 

fully developed. 

 

Now consider the following general form for the decay function, chosen to be 

exponential in nature: 
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* 2
1 exp

[188.6 ( )]d

afn s
R

φ θ

⎛ ⎞
⎜ ⎟

= − ⎜ ⎟
⎜ ⎟⋅ − ±
⎝ ⎠

                                                                  (A.14) 

 

where φd2 = 7.5º on the mandrel side and φd1 = θ-7.5º on the clamp side.  a = -350 is a constant 

for all Rc/d, and ± s/R is the angle in the straight region at bend radius R and only applies to the 

straight part of the tube.  In other words, the s/R term is not in the expression (A.14) inside the 

curved region.  On the mandrel side +s/R applies, and on the clamp side –s/R applies.  This is 

described in detail below. 

 

s > 0 is a linear length measured from the start of the straight region, and only applies to 

the straight region of tube (on clamp and mandrel side), which means that the term ± s/R is made 

to vanish for calculations inside the bend region, *0 θ θ≤ ≤ .  For calculations outside the bend 

(in the straight regions), the numerical value of θ* in fn is set to be 0 or θ depending on whether 

the straight region is on the clamp side or the mandrel side, and the term ± s/R continues the 

numerical decay.  A more generic functional form for fn is shown below, in the form of a 

multiplier, as used in the bend program. 

 

A more generic function in the form of a multiplier for residual stress, strain, and 

change in wall thickness, as used in the program, is: 

 

* 2
1

* 2
2

1 1 exp
[188.6 ( 3 )]

1 2 exp
[188.6 ( 3 )]

d

d

amult op sop
R

aop sop
R

φ θ

φ θ

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟⎪ ⎪= − ⋅ ×⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟⋅ − − ⋅
⎪ ⎪⎝ ⎠⎩ ⎭
⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟⎪ ⎪− ⋅⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟⋅ − + ⋅
⎪ ⎪⎝ ⎠⎩ ⎭

 (A.15) 



 

 175

where φd1 = θ -7.5º, and φd2 = 7.5º; and op1, op2, and op3 are logical operators in (A.15)

.  Refer to Figure A.7.   

 

In region ABCD: op1=0, op2=1.  For θ* ≥ 0, op3 = 0.  In the straight region on mandrel 

side, op3=1 and set θ * = 0.  In region EFGH: op1=1, op2=0.  For θ *≤ θ, op3=0.  In the straight 

region on clamp side, op3=1 and set θ *= θ.  In ABEF, the fully developed region, op1=op2=0. 

 

In the program, this multiplier (eq. (A.15) )is used to “decay” the fully developed values 

of strain, residual stress, and change in wall thickness, in the transition regions ABCD and 

EFGH.  In the fully developed region ABEF, mult = 1, meaning that no decay takes place there. 

 

Mathematically, one can write: 

( )

[ ( ) ]
( )

ij ij

new new

ij ij

fully developed mult

t t t fully developed t mult
fully developed mult

ε ε

σ σ

= ⋅

= + − ⋅
= ⋅

  (A.16) 

 

The fully developed strains, stresses, and wall thickness are simply the values calculated 

using the analytical formulas developed.  These fully developed values apply to the region inside 

ABEF. 

 

Now there are cases where the bend angle θ is small, such as 7º.  In such a case the 

decay regions must merge, inside the curved bend region, and consequently a fully developed 

region does not develop.  Mathematically it is difficult to describe how this is dealt with in the 

bend program, so instead, a graphical explanation will be given in Figure A.8, and illustrated 

with an example. 
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In Figure A.8 (i), the flat region is the fully developed region for the stresses, strains 

and thickness, for θ = 45º.  The point Ad is the limiting decay point which corresponds to the 

center of the bend in an undeveloped bend (ii), which in the example shown is for θ = 10º.  In (ii) 

the bend angle θ is too small so the fully developed condition is never reached. 

 

C C SS SS

C = curved bend region 
S = straight region 

45º 
10º

Ad AdAd

5º = 10/2 

 θ* 
7.5º (x2)

 

Figure A.8: Decay for (i) Fully developed – 45º bend angle and (ii) Undeveloped – 10º bend angle 

 

A.8- Variation of Hoop Strain Through Thickness 

 

Previously the average through-thickness hoop strain, εhoop, was calculated.  Using this 

average hoop strain one can now proceed to approximately calculate its variation through the 

wall thickness. 

 

For cylindrical coordinates, the expression for engineering hoop strain is [51] 

2
1

r
dvw

r d
ε

α
⎛ ⎞= +⎜ ⎟⎝ ⎠

            (A.17) 

where α is in the circumferential direction, wr is the radial displacement, v is the 

circumferential displacement, and r is the radial distance, at a point.  At α = αNA, v = m (Figure 
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3.2). The mid-surface radius is denoted as ro.  At r = ro, wr ≅ 0 approximately.  Then at r = ro + 

t/2, wr ≅ (tnew – t)/2, and at r = ro - t/2, wr ≅ -(tnew – t)/2.  Assuming a linear distribution for wr for 

a thin wall, one can write (in terms of the integration points – Appendix A.6): 

( )
2

new
r

t tw ip −= ⋅                  (A.18) 

This makes sense since (for the convention used) ip < 0 for r < ro, and ip > 0 for r > ro.  

One can also write r = ro + ip⋅tnew/2. 

 

Now v can be assumed constant through the (thin wall) thickness.  One has a calculation 

for the average through-thickness hoop strain (εhoop) which can be thought of as the hoop strain at 

the midsurface r = ro, which is roughly constant in the tensile and compressive regions.  

Therefore, one can write 

hoopv r α ε≅ ⋅ ⋅   (A.19) 

 

Substituting (A.19) and (A.18) into (A.17) one can formulate an approximate 

expression for the hoop strain as a function of the through-thickness ip, 

2
( )( )

(2 )
new

hoop
o new

t tip ip
r ip t

ε ε−= ⋅ +
⋅ + ⋅

           (A.20) 

This can be used to calculate the hoop strain at each of the seven integration points 

(Appendix A.6).  Note that at ip = 0, ε2(ip) = εhoop. 

 

A.9 - Original Tube Stock Length 

 

It is very useful to know the minimum original straight tube length of a tube necessary 

to give all the required bends, and straight region lengths.  This is especially important to know 
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for a tube bent numerous times and with varying degrees of boost, where it is not obvious what 

the original length would be. 

 

Mathematically, one can write the original length as 

 
1

1 1 1
( )

N N N
b

stock ci i i i i
i i i

L R A l lθ
+

= = =

= − ⋅ + +∑ ∑ ∑   (A.21) 

  

• N is the number of bend regions 

• Rci is the desired centerline radius, after springback, for each bend region i 

• Ai is the neutral axis distance below the centerline for the pure bending condition, for 

each bend region i (Figure 3.1). 

• θi is the bend angle (in radians) for each bend region i 

• li is the desired straight region length, after bending, as shown in the Appendix A.4 

section on mesh generation 

• li
b is the boost length, as given by eq. 3.21, for each bend region i 

 

A.10 - End Feed Corresponding to Pure Bending 

 

In tube bending practice, it can be useful to know the percentage boost corresponding to 

pure bending (zero boost force) on a rotary draw bender, for a particular size tube and a 

particular Rc/d ratio.  This unique percent boost is simply the displacement the back of the tube 

(feeding into the bend) experiences under no influence of any boost force.  In other words, a 

pressure die moving at this specific percent boost value actually does nothing in terms of 

introducing axial membrane strains into the tube bend, since it is neither pushing material into 

the bend or pulling material out of the bend.  See Appendix A.13 for a physical proof of pure 

bending. 
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The analytical model calculates, approximately, the unique percent boost value 

corresponding to pure bending.  Looking at eq. (3.21): 

( )
100

b
c c

percent boostl R R Aθ θ= ⋅ ⋅ − − ⋅  

For pure bending, l must equal 0.  Therefore one can solve for percent boost: 

100( ) 97.6%c
c

percent boost R A
R

= − ⋅ =  

 

This is for Rc/d = 2.5, d = 76.2 mm, Rc = 190.5 mm, 1.57 mm original wall thickness, 

and A = 4.53 mm (calculated).  This is an important result because it says that for percent boost 

> 97.6% material is “pushed” into the bend to introduce compressive membrane strains (e(α) < 

0).  For percent boost < 97.6% material is “pulled” out of the bend to introduce tensile 

membrane strains (e(α) > 0).  In the latter case, frictional force between the pressure die and the 

tube is the means to control the movement of the tube.  In the former case, the reaction of the 

boost block on the back of the tube is the means to control the movement. 

 

A.11 - Accounting for Slip between Tube and Pressure Die 

 

For the case where friction is the mode of boost (for percent boost < 97.6%) there is the 

chance for slippage, resulting from inadequate friction between tube and pressure die.  Note that 

for the case where the boost block is utilized (for percent boost > 97.6%) then slip is impossible, 

since the forward displacement of the pressure die exceeds that of the tube. 

 

Let’s say that for a particular friction boost there is a slip of, say, 16.5 mm between the 

pressure die and the tube during the course of the bend (as in the NB100 experimental case), 

which was bent to 91° (over-bent to allow springback to 90°).  The prescribed boost was 100%, 

which is different from the “effective” boost the tube experienced because of slip.  The pressure 
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die moved 16.5 mm ahead of the back of the tube.  In other words the pressure die was moving 

faster than the straight part of the tube feeding into the bend (the part in contact with the pressure 

die). 

 

During the course of the bend, the centerline of the tube moves an arc length distance 

1
91
90 2cd R π= ⋅ ⋅            (A.22) 

Now, at 100% boost the pressure die moves 

2 11.0d d= ⋅            (A.23) 

Because of slip the back of the tube, in reality, moves 

3 2 16.5d d= −            (A.24) 

Thus, d3 corresponds to an effective percent boost.  One can solve for this 

mathematically, 

3 1100
percent boostd d= ⋅          (A.25) 

For Rc = 188.595 mm (bend die radius in the experimental study), one calculates 

effective percent boost = 94.5%.  This is a rough estimate because during the course of the bend 

the degree of slip is not necessarily uniform.  So the effective percent boost calculated is 

essentially an average value, and is coincidently very close to the LE95 boost case. 

 

A.12 - Bend Die Torque 

 

Consider the tube, shown in Figure A.9, sectioned at the tangent line.  This choice of 

sectioning conveniently allows one to calculate tool contact forces and moments, given the 

known force Fboost (eq. 3.36), and moment M (eq. 3.45). 
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As shown in Figure A.9, the forces Fx, Fz are the resultant forces acting on the tube, at 

point P, due to contact with the bend die and clamp die.  The moment Mbd is the resultant 

moment acting on the tube due to contact with the bend die and clamp die.  The bending moment 

M is due to the axial stresses acting on the tube cross-section.  This moment M is about the 

centroid of area of the cross-section, c.  To is the necessary net torque applied to the bend die 

about the center of rotation o.  To does not take into account friction between mandrel and tube, 

therefore To is the net torque needed by the bend die.  The sign convention is as shown in Figure 

A.9. 

 

First, perform a force balance on the tube: 

0 0

0
x dir x

z dir z boost

F F

F F F
−

−

= → =

= → =
∑
∑

         (A.26) 

 

Now, perform a moment balance on the tube, about centroid c: 

0cM =∑            (A.27) 

Therefore, 

0bd z xM M F r− − ⋅ =           (A.28) 

 

Now, perform a moment balance on the bend die, about o, keeping in mind that the 

force Fz and moment Mbd act in the opposite sense, due to Newton’s 3rd law. 

 

Summing moments about o, 

0oM =∑            (A.29) 

Therefore, 
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( ) 0o bd z xT M F R r− + − ⋅ − =          (A.30) 

As a result, with R = Rc – Ect, 

( )o boost c ctT M F R E= − ⋅ −          (A.31) 

 

This result is interesting because it says that the net torque is independent of bend 

rotation angle θ, and is constant.  It should be noted that the net torque is an underestimate of the 

actual torque needed by the bend die, due to friction.  There are two sources of frictional losses 

to consider.  The first source of friction is due to the internal resistance in the bend die, which 

must be overcome for the bend die to rotate.  The second source is from the friction with the 

mandrel balls.  The mandrel balls lie inside the tube in the section as shown in Figure A.10, and 

therefore their contribution to the force and moment balance must be taken into account for 

accurate accounting of friction. The friction force Ff is the friction force acting on the tube due to 

contact between the mandrel balls and tube inside-wall.  The difficulty is in determining Ff to 

obtain a reasonable friction estimate. 
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Figure A.9: Section of tube showing the resultant forces and moment acting on it due to contact 
with bend die and clamp die 
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Figure A.10: Tube section showing friction force acting on tube due to contact with mandrel balls 

 

A.13 – Pure Bending Case 

 

Consider the straight tube section A in Figure A.11.  Ms is the resultant moment acting on the 

straight section due to contact with the pressure die and the wiper.  Fboost is the net boost force 

acting on the section due to the pressure die. 

 

Perform a force balance on section A: 

 

0z dir c boostF F F− = → =∑    (A.32) 

 

Now, perform a moment balance on section A: 

 

0 s cM M M= → =∑                      (A.33) 
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Consider the curved section B.  1σ  is the axial stress distribution acting on the cross-section.  Fc 

is the resultant axial force acting on the cross-section due to 1σ , with line of action passing 

through the centroid of area c.  Mc is the resultant moment due to 1σ , calculated about the 

centroid c. 

 

For pure bending Fc = 0, and there is only a resultant moment Mc acting on the tube 

cross-section.  Furthermore, for pure bending, Fc = Fboost = 0.  This means that to obtain a pure 

bending condition, the net boost force acting on the tube must be zero. 
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Figure A.11: Free-body diagram illustrating pure bending case 
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Appendix B – Outline of Analytical Model 

 

The purpose of the discussion in this appendix is to summarize the more practical 

aspects of the bend model to provide a simple understanding of the main aspects of input and 

output requirements, limitations and assumptions, and built-in efficiencies. 

B.1 - Input Considerations 

 

The main advantage over the FEA model is the much simpler setup and consequently 

the much reduced run time.  The user can input all parameters from a GUI (Graphical User 

Interface), which visually shows the different stages of, say, a multiple bend operation in 

progress (see Figure B. 1).  The geometric parameters of each stage of the bend (such as 

centerline bend radius, bend angle, straight region length) are input into the GUI.  The 

corresponding bend is visually shown to the user, as each bend specification is input. 
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Figure B. 1: GUI setup menu showing tube bent in three-dimensions 

 

All geometric parameters required as input are: 

 

• Tube outside diameter 

• Original tube wall thickness 

• For each bend region: desired centerline radius (after springback), desired bend angle 

(after springback), straight region length, z-axis rotation after each bend – for creating 

tubes with multiple bends in three dimensions 

 

Non-geometric parameters required as input are: 
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• Desired part ID 

• Elastic modulus of tube material 

• Poisson’s ratio 

• Yield Stress 

• Half-symmetry option or full-symmetry option (see below) 

• For each shell element in the tube mesh, 7 integration points or 28 integration points can 

be chosen. 

• A flow curve input file can be input for calculations in plasticity equations, or a simpler 

hardening rule can be input, by the user, in the form of a K and n value, corresponding to 

a power law model for the tube material, as given by ( )n
eff yp effKσ ε ε= ⋅ + , discussed in 

Section 3.1.1. 

• Percent boost or boost force can be specified as input 

• Option to allow LS-DYNA to numerically calculate residual stresses for an analytically 

bent tube 

 

Note that the half symmetry option only applies to tubes bent in a single plane (z-axis rotation is 

β = ± 180º, see Appendix A.4), meaning that all the bends of the tube lie in a single plane.  Full-

symmetry always applies to tubes bent in three dimensions (where one or more z-rotations are 

not equal to ± 180º), meaning that not all bends lie in the same plane.  The full-symmetry option 

is available, if desired, for tubes where all the bends lie in a single plane. 

 
By default, the bend model analytically calculates the residual stresses, by subtracting elastic 

stresses from total elastic-plastic stresses, to account for springback.  Alternatively, one can set 

the option of not having the analytical model subtract the elastic stresses, therefore retaining the 

total elastic-plastic stresses before unloading of the tube (springback).   The motivation for 

having this option is that the analytically calculated residual stresses don’t fully satisfy static 

equilibrium in the tube.  LS-DYNA can then be used to perform springback (unloading) 

calculations (based on the analytical elastic-plastic stresses after bending).  In this approach, the 
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resulting residual stresses better satisfy the static equilibrium requirement.  The LS-DYNA-

calculated residual stresses are then to be used in place of the analytically calculated residual 

stresses.  The analytically calculated strains, thickness, and nodal coordinates can be kept as in 

the original analytical output.  It is especially important to keep the original analytically 

determined nodal coordinates since those correspond to the desired final dimensions of the tube 

which can be quite important for fit in a die during a secondary forming operation.  Also, if one 

wishes, the LS-DYNA-calculated strains and thickness can be used in place of the analytical 

ones.  Running a FE springback calculation is not very time consuming, so there is no real 

disadvantage in incorporating it. 

 

B.2 - Output 

 

The bend program generates residual stress after springback, or elastic-plastic stress, 

before springback, in output files; as well as strain, shell thickness, and nodal coordinate output 

files.  These output files can be used as input for a subsequent springback simulation (if residual 

stresses not calculated analytically).  Then the data, after springback, can be used as input to a 

secondary forming simulation.  Alternatively, if residual stresses are calculated analytically, then 

the analytical output files can be used directly as input data for a secondary forming simulation, 

with no intermediate FE springback simulation. 

 

Furthermore, for information purposes, a results output file is created showing stress, 

strain, and thickness distribution around the tube circumference in the fully developed bend 

region. 

 

In this results output file, the program also outputs, for each bend region, the boost force 

corresponding to the prescribed percent boost, or the percent boost corresponding to the 

prescribed boost force, as well as the net bend die torque.  The program also outputs the 
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centerline bend radius to bend the tube at, such that the desired centerline radius is achieved after 

springback, for each bend region.  This can be used to estimate the required bend die size to 

allow for residual springback.  Furthermore, the program outputs the necessary bend angle such 

that, after springback, the tube springs back to the desired bend angle, for each bend region. 

 

For each bend region, the program additionally outputs the percent boost corresponding 

to pure bending, which is for zero boost force.  This can be useful information since below this 

value the boost “pulls” material out of the bend, and above it the boost “pushes” material into the 

bend. 

 

Finally, the program outputs the minimum original straight stock length of the tube such 

that it will be long enough to accommodate all the bends and all the straight region lengths’. 

 

Figure B.2 schematically shows the basic sequence and structure of the input and 

output. 
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 Geometric and non-
geometric input 

 
Bend Model 

Results output file 
Stress, strain and thickness 
output, with stresses relaxed 
analytically, after 
springback 

Stress, strain and thickness 
output, with original elastic-
plastic stresses, before 
springback, retained 

Stresses relaxed 
numerically with FEM 
simulation

Optional secondary 
forming simulation 

 

Figure B.2: Flow chart showing basic structure of input and output 

 

B.3  - Limitations and Assumptions 

 

Among the main assumptions of the model are the following: 

• Isotropic material 

• Constant percent boost or constant boost force throughout duration of bend 

• The strain distribution in the tube cross-section is such that the tube is either borderline 

fully-tensile or borderline fully-compressive, at the extremes. 

 

In other words, for borderline fully-tensile the minimum axial strain is 0, located at the innermost 

compressive region of the tube (inside bend radius), owing to a very low boost tensile membrane 

strain component.  For borderline fully-compressive, the maximum axial strain is 0 at the 

outermost tensile region of the tube (outside bend radius), owing to a very high boost 
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compressive tensile membrane strain component.  As it turns out these ranges of strain and boost 

are very comfortably in the practical range of tube bending practice anyway.  This is discussed in 

more detail in Appendix A.3. 

 
• No normal stress in the thickness direction of the shell, consistent with thin shell theory 

assumptions 

• No shear strain or shear stress in the local 1 2 3x x x directions of the tube, consistent with 

typical bending theory, as found in the literature 

 

B.4 - Efficiency 

 

The program has several built-in means with which to significantly reduce run time and increase 

computational efficiency.  Among these are: 

 

• The finite element mesh of the tube is generated automatically by the bend program.  The 

mesh density is arbitrary, and defined by the user. 

 

• If there are multiple bend regions of identical boost and bend radius, the program then 

performs array calculations only once for those regions, so as to avoid having to repeat 

calculations, and waste computation time. 

 

• For each distinct bend region, array calculations containing stress, strain and thickness 

are only performed NxP times, where N is the number of elements around the 

circumference, and P is the number of integration points per element.  In other words, the 

model calculations are performed for each shell element, and for each integration point in 

the element.  This allows greater efficiency in computation since the stress, strain and 

thickness data in each element, in each bend, can only correspond to one of the NxP array 

calculations, identified by circumferential (α) position.  The fact that the prescribed boost 
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is constant allows this to be the case. Near the ends, of course, decay functions reduce the 

numerical values of the stress, strain and thickness, but only as a calculation external to 

the original array calculations. 

 

• The constant boost means that only NxP individual array calculations are needed for each 

bend region.  If the boost were allowed to vary during the duration of the bend then the 

array calculations would have to account for the longitudinal (θ) position of each shell 

element in the bend, as well as the circumferential (α) position of the shell element.  This 

would greatly reduce run-time, as the number of longitudinal positions to take into 

account would be equal to the number of elements in the longitudinal direction for each 

bend.  And if this number is M, then the calculations would take M times as long for each 

bend. 

 

• The program runs much faster if percent boost is prescribed instead of boost force.  The 

reason is that prescribed boost force requires expensive iteration to find the 

corresponding membrane strain component, using the bisection method, whereas with 

given percent boost one can easily and directly find the corresponding membrane strain 

component.  This is explained in more detail in Section 3.1.2. 


