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User Manual For Trebuchet Simulator In Excel 

© Franco Normani 

December 07, 2009 

Email: franco@real-world-physics-problems.com 

Alternate email: fvnorman@hotmail.com 

 

Legal Notice and Disclaimer 

 

This Excel program and manual are for personal use only. You are not permitted to sell 

or redistribute this program and manual in any way. 

 

The results of the program are accurate as far as the physics and mathematics are 

concerned. But you are still expected to exercise good judgment when designing and 

building a trebuchet. Therefore, I am not responsible for the use or misuse of the 

program, or the information presented here. 

 

 

Purpose 

 

The purpose of this Excel program (spreadsheet) and manual is to allow you to optimize 

the dimensions of a trebuchet to give you the farthest throwing distance. The program 

and manual are not intended as a material selection guide, or a construction guide. 

However, the information given in the Excel program will give you all the information 

you need to calculate things like material stress, material type, and the size of 

components necessary to withstand the loads experienced by the trebuchet when “in 

service”. 

 

Remember to exercise caution if you decide to build and test a trebuchet, since they are 

capable of doing serious damage; something the ancients knew all too well. 
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Trebuchet Description 

 

The two labeled figures below show a trebuchet during launching of the payload. 
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If there is no friction on the finger, the ring (attached to the sling) begins to slide off the 

finger when α = 90°+δ. At this point the sling releases and the payload is launched.  (See 

page 12 for the case where there is friction between the ring and finger). 

 

 

Assumptions and Analysis 

 

The following assumptions are made in the model: 
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• The trebuchet is rigid. There is no flexing of the various members. 

 

• There is no friction on the guide chute (discussed below) or at the joints (pivots). 

 

• The sling and pouch have negligible mass. 

 

• There is no air resistance as the payload flies through the air. 

 

• The trebuchet remains stationary on the ground during launch. 

 

 

Figure 1 below (with sign convention and dimensions labeled, as shown) shows a 

simplified schematic of the trebuchet, where a single cable models the connection 

between the counterweight and beam, and the connection between the payload and beam 

(the sling). This figure shows the (assumed) initial start position of the launch when a 

guide chute is used (keep this in mind when using the Excel spreadsheet). A guide 

chute is used to guide the sling along and support the payload until the speed is great 

enough to hold it in the pouch alone. 
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Figure 2 below (with sign convention and dimensions labeled, as shown) shows the 

trebuchet after release, as the payload is sliding along the guide chute. This is considered 

to be a constrained case since the guide chute “holds” the payload in place as it slides 

along. The instant the payload loses contact with the guide chute we have an 

unconstrained situation (Case 2, shown on the next page). 
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Figure 3 below shows the unconstrained case, where the payload has lost contact with the 

guide chute and has “lifted off”. At this point the physics of the problem changes since 

the payload is no longer in contact with the guide chute. The initial conditions for this 

case (at the instant lift off occurs) are equal to the (final) conditions from Case 1 (just 

before the payload loses contact with the guide chute). 

 

If you do not wish to use a guide chute in your design, you can just set initial conditions 

of your choice in the Excel spreadsheet (in cells J5-J10). This corresponds to an 

unconstrained case (as shown in the figure below). 
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The figure below shows the velocity of the payload at the instant the sling releases. At 

this point the payload can be treated as a projectile, where the vertical component of 

velocity Vy changes (due to gravity), and the horizontal component of velocity Vx stays 

constant (since air resistance is neglected). The initial vertical component of velocity is 

given as V1y , shown below. 
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The figure below shows the trajectory of the payload after launch. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The approximate horizontal distance traveled by the payload is given by: 

 

tVd xx =∆  

 

where 

 

g

V
t

y1
2=    (t is time and g = 9.8 m/s

2
 − the acceleration due to gravity, on earth) 

 

 

Therefore, 
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VV
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yx

x

12
=∆  

 

In the Excel spreadsheet, an example of Chart 3 (shown below) gives the horizontal range 

∆dx the payload is thrown, as a function of release time. The maximum horizontal 

distance thrown (the first positive peak of the graph) corresponds to the desired sling 

release angle α (alpha). Since different trebuchet designs result in different peak 

horizontal distances, it is evident that one would wish to adjust the dimensions of the 

trebuchet (and initial release conditions) so that the peak horizontal distance thrown is 

maximized. 

 ∆dx 
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Note: Only the first positive peak of the graph is valid, in terms of maximum distance 

thrown. The sling angle α is continually increasing up to the first positive peak, and (as a 

result) it’s easy to set the sling release angle here. 

 

 
 

 

Input Variables In Excel Spreadsheet 

 

In the Excel spreadsheet, the values in the green cells are what you change. These are the 

input values. These input values are shown in Figures 1-3 (with the exception of Ip which 

is described on the next page). For the most part, the input values are self-explanatory. 

However, there are certain input values for which it may not be clear what they represent. 

These values are listed below, along with their meaning: 

 

theta − θ   (this value is negative in the model, in accordance with the sign convention 

used. However, in the Excel charts, θ is plotted as positive, to avoid confusion) 

d(theta)/dt − dθ/dt 

alpha − α   (this value is positive, in accordance with the sign convention used) 

d(alpha)/dt − dα/dt 

beta − β   (this value is positive, in accordance with the sign convention used) 

d(beta)/dt − dβ/dt 
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These above values are given in rads (radians) and rads/s (radians/second). If you are 

using degrees in your design you must convert it to radians when entering the input 

values in the Excel spreadsheet. One radian is equal to 57.29578 degrees. For example, 

theta = 45 degrees is equal to 45/57.29578 = 0.785 rads. Another example: d(theta)/dt = 

105 degrees/s is equal to 1.83 rad/s. 

 

The radian measure is a common convention used in physics and engineering. It 

simplifies certain types of calculations, which is why it is used in the model. 

 

 

Note: If the trebuchet is released from a stationary position (i.e. it starts from rest), then 

d(theta)/dt = 0, d(alpha)/dt = 0, and d(beta)/dt = 0. 

 

Note: If you are using a guide chute in your design, make sure the contents of cells S7-

S12 are copied into cells J5-J10 for each set of input values. This is specified in the 

spreadsheet. 

 

Note: The Excel simulation spans enough time (in seconds) to ensure that the simulation 

is captured in its entirety for most every trebuchet design; meaning, the desired sling 

release angle α (for maximum throwing distance) lies well before the end of the 

simulation is reached. 

 

Reminder: The sign convention for the values used in the Excel spreadsheet is given in 

Figures 1-3. This is the sign convention you must follow when entering the input values 

in the Excel spreadsheet (these are the values in the green cells). 

 

 

The moment of inertia Ip of the beam is the moment of inertia of the beam about an axis 

passing through the fixed pivot P and pointing out of the page. It is given by: 

 

2)2( sLmII bGP −+=  

 

The first term on the right (IG) is the moment of inertia of the beam about its center of 

mass G (about an axis passing through point G and pointing out of the page). 

 

The second term on the right accounts for the offset of the pivot P from the center of 

mass G (parallel axis theorem). 

 

If we assume that the beam can be approximated as a uniform slender rod: 

 

2)21(
12

1
LLmI bG +=  

 

Therefore, 
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22 )2()21(
12

1
sLmLLmI bbP −++=  

 

The center of mass G lies in the midpoint of the beam, therefore s = (L1 + L2)/2. If the 

shape of the beam is something other than a slender rod, we must use a different value for 

IG and a different value for s. 

 

 

Numerical Instability 

 

An example of Chart 1 (shown below) shows a “spike” in the sling tension. This is an 

example of a numerical instability, which is unavoidable for certain choices of input 

parameters. It will not generally be a problem in terms of the overall solution but should 

be recognized as something that can happen depending on your choice of input 

parameters. However, the solution will only be inaccurate at the location of this 

instability, but accurate everywhere else. 
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Friction Between Ring and Finger 

 

The figure below shows a schematic of the ring and finger. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The normal force N acts perpendicular to the finger, due to the contact between ring and 

finger. The normal force is given as: 

 

( ))90(cos
2

δα +−





=
T

N  

 

where T is the sling tension in the (single cable) model as given by the Excel spreadsheet, 

and T/2 is the tension in each length of the sling (in the actual trebuchet). 

 

 

The friction force F acts parallel to the finger, due to the contact between ring and finger. 

The friction force is given as: 

 

( ))90(sin
2

δα +−





=
T

F  

 

 

Let µs be the coefficient of static friction between the ring and finger. 

 

When the ring starts to slip off the finger we have: 

 

δ ring 
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α-(90+δ ) 
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NF sµ>  

 

 

Using the above three equations we can solve for δ when slipping begins: 

 









−−°−= −

sµ
αδ

1
tan180 1

   

 

where δ, α, and tan
-1
(-1/µs) are in degrees. 

 

Note that the solution is independent of tension T, since it cancels out. 

 

 

Therefore, the basic procedure when using the above equation is: 

 

1) Determine the coefficient of static friction µs between the ring and finger. This can be 

done experimentally by setting up the finger at an arbitrary angle δ and manually 

increasing the sling angle α until the ring starts to slide off, and then from the above 

equation solve for µs (since δ and α are known). 

 

2) From the Excel spreadsheet, find the sling release angle α corresponding to the 

maximum horizontal distance the payload is thrown (from Chart3). For example, from 

Chart3 shown on page 9, the maximum horizontal distance thrown is 20 meters, with a 

sling release angle α of around 180°. 
 

3) Using the above equation, solve for δ using the values for µs and α calculated from 1) 

and 2). This value of δ for the finger angle will be used in your design. For example, if α 

= 130°, and µs = 0.12, then δ = 33.16°. You can use δ = 33° in your design. 

 

 

It is assumed that the length of the finger is short enough (perhaps a few centimeters in 

length) so that when slipping begins the ring slides off the finger very quickly. However, 

there is a possibility that the “sliding time” could potentially delay the launching of the 

payload by a bit (since the sling will fully release only when the ring is completely off the 

finger). So, it may be necessary to compensate for this by making the finger angle δ a few 

degrees less than the value calculated from the above equation. This way, by the time the 

ring slides off the finger completely, the sling angle α will have reached the (optimal) 

value determined from Chart3, and the payload will be launched at the optimal point (for 

maximum distance). 
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Optimal Design 

 

According to Donald B. Siano (Trebuchet Mechanics, March 28, 2001), the optimal 

release position and design, based on his definition of "range efficiency" is such that: 

 

• The initial release position is such that the beam on the counterweight side makes 

an angle of 45° with the vertical (θ1 = -45° in Figure 1). 

 

• The length of the long arm of the beam is 3.75 times the length of the short arm of 

the beam (L2 = 3.75xL1). 

 

• The length of the sling is equal to the length of the long arm of the beam (L2=L3). 

 

• The length of the counterweight suspension length is such that L1=L4. 

 

According to Siano’s results, propping the counterweight up initially makes little 

difference. So in general, it is recommended that the counterweight hangs straight down 

initially, where |θ| = |β|. 

 

Furthermore, Siano recommends using a counterweight that has a mass 100 times greater 

than the mass of the payload (M = 100xm). However, it is certainly possible to achieve a 

good design with a much lighter counterweight than this. 

 

 

Additional Features in Excel Program 

 

There are other values in the Excel spreadsheet you may be interested in plotting and 

analyzing (which aren’t already plotted in the charts), such as the reaction forces at the 

pivot P (columns AT/AU and CH/CI in the Excel spreadsheet). Note that the direction of 

these reaction forces follows the x-y sign convention given in Figures 1-3. 

 

These reaction forces can be useful information if calculating the stresses in the beam 

during launch. 

 

 

Troubleshooting 
 

If the Excel spreadsheet doesn't work, or you think the results are messed up in some 

way, first make sure your units are consistent, and also check that your input values are 

realistic. But if you still can’t figure out what’s wrong, email me at franco@real-world-

physics-problems.com. My alternate email address is: fvnorman@hotmail.com. If 

possible, write me with the same email address that you entered in the purchase form. 

This isn't necessary but it just makes it easier for me to confirm that you actually 

purchased the product. If you didn't purchase the product your support questions will go 

unanswered. 
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