During a bench press, does the amount of work or power required depend on the rate at which the weight is lifted?

Solution:

Draw a free body diagram of the weight, along with sign convention.

\[\begin{array}{c}
\uparrow F_a \\
\downarrow F_g \\
x \uparrow + \\
\hline
\end{array} \]

For one repetition, where \(x \) is the lift distance, \(F_g \) is the force of gravity, and \(F_a \) is the applied force exerted by the lifter.

\[F_g = mg, \text{ where } m \text{ is the mass of the weight and } g \text{ is the acceleration due to gravity.} \]

By Newton's second law applied to the weight:

\[F_a - F_g = ma, \text{ where } a \text{ is the acceleration of the weight} \]

Thus, \[F_a = ma + F_g = ma + mg \] (1)

The work required is given by the integral equation:

\[W = \int_0^T F_a \, dx, \text{ where } T \text{ is the lift time and } dx \text{ is the incremental lift distance.} \]

Substitute (1) into the above equation:

\[W = \int_0^T (ma + mg) \, dx = m \int_0^T a \, dx + mg \int_0^T dx \]
Now, \(a = \frac{dv}{dt} \), where \(v \) is the velocity of the weight.

Therefore, \(W = m \int_0^T \frac{dv}{dt} \cdot dx + mg \int_0^T dx \)
\[W = m \int_0^T v \cdot dv + mg \int_0^T dx \]
\[\frac{dx}{dt} = v, \text{ hence,} \]
\[W = m \int_0^T v \cdot dv + mg \int_0^T dx \]

Note:
\[x = x(t) \quad v = v(t), \text{ where } t \text{ is time} \]
\[W = m \cdot \frac{1}{2} v^2(T) - m \cdot \frac{1}{2} v^2(0) + mg x(T) - mg x(0) \]
\[v(0) \text{ is the weight velocity at the bottom of the lift. } v(T) \text{ is the weight velocity at the top of the lift. } v(0) = v(T) = 0 \]

Therefore, \(W = 0 + mg \left[x(T) - x(0) \right] \)
\[\text{= lift distance} \equiv \ell \]

Hence, the work required to lift the weight is \(W = mg \ell \), which is constant and independent of the rate at which the weight is lifted.

Now, power = \(P = F_a v = m(a + g)v \). This is an instantaneous quantity and it does depend on how fast the weight is lifted at any one time.