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User Manual For Projectile Motion Simulator In Excel 

© Franco Normani 

February 17, 2011 

Email: franco@real-world-physics-problems.com 

Alternate email: fvnorman@hotmail.com 

 
Legal Notice and Disclaimer 
 
This Excel program and manual are for personal use only. You are not permitted to sell 
or redistribute this program and manual in any way. 
 
The results of the program are accurate as far as the physics and mathematics are 
concerned. But you are still expected to exercise good judgment when using the 
simulation results for your modeling problems. Therefore, I am not responsible for the 
use or misuse of the program, or the information presented here. 
 
 
Purpose 
 
The purpose of this Excel program (spreadsheet) and manual is to allow you to model the 
motion of an object (projectile) under the influence of gravity, drag and (optionally) the 
Magnus effect (described in the next section). For example, baseballs, tennis balls, golf 
balls, soccer balls, and volleyballs are projectiles that experience drag and (sometimes) 
the Magnus effect during flight. So it is important to have a way of predicting their 
motion with reasonable accuracy, since accounting only for the effect of gravity can 
introduce significant errors in the predictions. 
 
 
Analysis and Assumptions 
 
A drag force is the resistance force caused by the motion of an object through a fluid, 
such as water or air. A drag force opposes the motion of an object and acts opposite to the 
direction of the oncoming flow velocity. This is the relative velocity between the object 
and the fluid. For objects of macroscopic size that are moving through the air at a speed 
of at least a few meters/second, the drag force (FD) is given by: 
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Cd is the drag coefficient, which can vary along with the speed of the object. But typical 
values range from 0.4 to 1.0 for different fluids (such as air and water) 
 
ρ is the density of the fluid through which the object is moving 
 
v is the speed of the object relative to the fluid 
 
A is the projected cross-sectional area of the object perpendicular to the flow direction 
(that is, perpendicular to v). This is illustrated in the figure below, along with the 
direction of the velocity v and the direction of the drag force FD. 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 
 
 
For example, for a spherical object of radius r, A = π r2. 
 
 
If we have a spherical object (such as a ball) spinning during its motion through a fluid 
(such as air), friction between the object and fluid causes the fluid to react to the direction 
of spin of the object, generating a force known as the Magnus force. If the rotation of the 
object is in the plane of motion, the Magnus force (FM) is given by: 

 

vwKF sM ⋅=  

 
Where: 
 
w is the angular velocity of the spinning object 
 
v is the speed of the object relative to the fluid 
 
Ks is the proportionality constant. This constant can be expressed in a more precise 
mathematical form: 
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Where: 
 
Cs is the spin coefficient, which can vary along with the speed of the spherical object. But 
typical values for spheres range from 0.25 to 1.0 
 
ρ is the density of the fluid through which the spherical object is moving 
 
A is the cross-sectional area of the spherical object, which is equal to A = π r2 
 
r is the radius of the spherical object 
 
 
The reference for the above equation and the range of spin coefficient is: 
 
Optimizing A Volleyball Serve, Dan Lithio, Hope College, and Eric Webb, Case Western 
Reserve University, October 14, 2006. 
 
 
The figure below shows a spherical object spinning in the plane of motion and acted upon 
by the Magnus force. 
 
 

 
 
Source: 
 
http://en.wikipedia.org/wiki/Magnus_effect 
http://en.wikipedia.org/wiki/User:Gang65 
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To get a better understanding of the Magnus effect, imagine the above figure is of a ball 
thrown through the air. As the ball spins, friction between the ball and air causes the air 
to react to the direction of spin of the ball. 
 
As the ball undergoes top-spin (shown as clockwise rotation in the figure), it causes the 
velocity of the air around the top half of the ball to become less than the air velocity 
around the bottom half of the ball. This is because the tangential velocity of the ball in the 
top half acts in the opposite direction to the airflow, and the tangential velocity of the ball 
in the bottom half acts in the same direction as the airflow. In the figure shown, the 
airflow is in the leftward direction, relative to the ball. 
 
Since the (resultant) air speed around the top half of the ball is less than the air speed 
around the bottom half of the ball, the pressure is greater on the top of the ball. This 
causes a net downward force FM to act on the ball. This is due to Bernoulli's principle, 
which states that when air velocity decreases, air pressure increases (and vice-versa). 
 
If the ball were to spin counterclockwise (in the opposite direction) then the situation 
would reverse, and the pressure on the bottom of the ball would be greater than the 
pressure on the top of the ball, and a net upward force FM would act on the ball. 
 
 
 
We will now derive the equations of motion for an object experiencing gravity and drag. 
Consider the general object shown in the figure below, experiencing drag, and moving at 
instantaneous velocity v and angle α to the horizontal. 
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For the object shown in the figure above, treat it as a particle, and apply Newton’s second 
law in the x-direction: 
 

xD maF =− αcos  

 
 
Where: 
 
ax is the acceleration of the object in the x-direction 
 
m is the mass of the object 
 
α is the angle between the direction of motion and the horizontal 
 
 
Since, 
 

dt
dv

a x
x =  

 
 
we can write 
 

dt
dv

mF x
D =− αcos        (1) 

 
 
Now, apply Newton’s second law in the y-direction: 
 
 

yD mamgF =−− αsin  

 
 
Where: 
 
ay is the acceleration of the object in the y-direction 
 
g is the acceleration due to gravity 
 
 
 



 

Since, 
 

dt

dv
a y

y =  

 
we can write 
 

dt

dv
mmgF y

D =−− αsin        (2) 

 
 
Now, for the case where we have a spinning spherical object, we must add the force 
contribution of the Magnus effect to the force balance in equations (1) and (2). This 
allows us to account for both drag and the Magnus effect. Consider the spherical object 
shown in the figure below, spinning in the plane of motion, and experiencing the Magnus 
effect. It is moving at instantaneous velocity v and angle α to the horizontal. 
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The component of FM in the x-direction is: 
 

αsinMMx FF =        (3) 
 
 
The component of FM in the y-direction is: 
 

αcosMMy FF −=        (4) 
 
 
Next, add the Magnus force contributions of (3) and (4) to the force balance in equations 
(1) and (2). This gives us 
 

dt
dv

mFF x
MD =+− αα sincos        (5) 

 
and 
 

dt

dv
mFmgF y

MD =−−− αα cossin        (6) 

 
 
From before, 
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AvCF dD ρ=  

 
and 
 

vwKF sM ⋅−=  

 
 
Note that in the above equation we introduce a negative sign to account for the sign 
convention chosen for w, as explained on page 10. 
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From geometry, 
 

v
vx=αcos  

 
and 
 

v

vy=αsin  

 
and 
 

22
yx vvv +=  

 
 
Substitute the above five equations into equations (5) and (6). We get 
 

dt
dv

mvwKvvAvC x
ysyxxd =⋅−+− 22

2
1 ρ  

 
and 
 

dt

dv
mvwKmgvvAvC y

xsyxyd =⋅+−+− 22

2
1 ρ  

 
 
The above two equations are the final equations of motion (in the xy plane) for an object 
(projectile) experiencing the force of gravity, drag, and the Magnus effect. If the Magnus 
effect is not present simply set Ks = 0 in the above two equations, and only the force of 
gravity and drag will influence the motion of the object. 
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The following assumptions are made in this model: 
 

• The flight of the object is in air. The equation for drag given on page 1 is most 
accurate for projectile motion in air, due to the negligible effects of viscous 
forces, which is true for objects moving at velocities of at least a few 
meters/second (which is almost always true for projectile motion problems). 

 
• There is negligible wind, which can “push” on the object. 
  
• The object does not have an airfoil shape, so lift force is negligible. 
 
• The variables Cd, ρ, A, Ks, and w remain constant during the flight of the object. 

In particular for spherical objects, the projected frontal area A certainly does not 
change during its flight. But for non-spherical objects that tumble through the air, 
A changes, so an average value of A can be used. 

 
• The variable Ks only applies for spinning spherical objects, where the Magnus 

effect occurs. Otherwise, set Ks = 0 in the Excel program. For Ks = 0 the object is 
acted upon only by gravity and drag. For Ks ≠ 0 the object is acted upon by 
gravity, drag, and the Magnus effect. 

 
• The motion of the object occurs in the vertical plane, with gravity acting 

downwards in this plane. In other words, the motion of the object is two-
dimensional. 

  
• For a spinning spherical object subject to the Magnus effect, the rotation of the 

object is in the vertical plane (i.e. the plane of flight). This means that the angular 
velocity vector w of the object is normal to this plane. 

 
Note that in reality Cd is not a constant but varies as a function of object speed, flow 
direction, object orientation, object size, fluid density and fluid viscosity. So it must be 
chosen according to the conditions experienced by the object during its flight. This will 
usually be an approximation anyway, so it's advised that you simulate for a range of 
possible values of Cd to see its effect on the object (projectile) flight path. For more 
information on Cd see: 
 
http://en.wikipedia.org/wiki/Drag_coefficient 
 
http://www.grc.nasa.gov/WWW/K-12/airplane/dragco.html 
 
The proportionality constant Ks for the Magnus effect is also dependent on flow 
conditions and fluid properties. But available data on this constant is scarce, except in 
those cases where a sport, such as baseball, is involved, in which case the Magnus effect 
is important. In this instance, it is advised to use the range of spin coefficients (to 
calculate Ks) given on page 3, or use more exact data particular to the sport in question, 

http://en.wikipedia.org/wiki/Drag_coefficient
http://www.grc.nasa.gov/WWW/K-12/airplane/dragco.html


 

such as is available online. For example, the following paper discusses the effect of spin 
on the flight of a baseball: 
 
The effect of spin on the flight of a baseball, Alan Nathan, Department of Physics, 
University of Illinois, October 13, 2007. 
 
 
Sign Convention 
 
The figure below shows the trajectory of a typical object experiencing projectile motion, 
along with the sign convention used for motion along the x and y axes, and the sign 
convention used for the direction of spin of the object (if applicable). Keep this sign 
convention in mind when using the Excel simulator. 
 
The coordinate system (x, y) is chosen such that the initial position of the object is at 
position (0, 0), which corresponds to time zero (the starting time of the simulation). 
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a spherical spinning object (Ks ≠ 0): 

 is clockwise then w < 0 
 is counterclockwise then w > 0  
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Input Variables In Excel Spreadsheet 
 
In the Excel spreadsheet, the values in the green cells are what you change. These are the 
input values. For the most part, the input values are self-explanatory. However, for 
convenience sake the meaning of all these input values are given below: 
 
Drag coefficient (Cd) − This is the coefficient Cd given in the drag force equation on 
page 1. This is a dimensionless number. 
 
Proportionality constant (Ks) − This is the proportionality constant Ks given in the 
Magnus force equations on page 2 and 3. This number has units of kg. 
 
Angular velocity (w) − This is the angular velocity w of the object (if it is spherical and 
spinning), as given in the Magnus force equation for FM on page 2. This number has units 
of radians/second. Note that if you have a spin rate of X revolutions/second, the spin w in 
radians/second is 2πX. The sign convention for w is given on the previous page. 
 
Density of medium (p) − This is the density ρ of the fluid through which the object is 
moving. This number has units of kg/m3. The typical density of air is 1.2 kg/m3. 
 
Projected area (A) − This is the projected cross-sectional area A of the object 
perpendicular to the flow direction, as given in the drag force equation on page 1. This 
number has units of m2. 
 
Mass of object (m) − This is the mass m of the object. This number has units of kg. 
 
Acceleration due to gravity (g) − This is the acceleration of the object due to gravity, 
which on earth is equal to g = 9.8 m/s2. This number has units of m/s2. If you want to take 
into account the buoyant force acting on the object, you can use an “effective” 
acceleration due to gravity to account for the buoyant force. The formula for this is: 
 

m
Vg

ggeff
ρ

−=  

 

where geff is the effective gravity, ρ is the density of the fluid through which the object is 
moving (in kg/m3), V is the volume of the object (in m3), g = 9.8 m/s2, and m is the mass 
of the object (in kg). Note that the value for geff goes into cell H10 in the Excel 
spreadsheet. 
 

Note that buoyant force is often negligible but can sometimes be significant. For 
example, the buoyant force acting on a basketball is significant because its volume 
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mostly consists of pressurized air, which weighs little − so it results in an effective 
acceleration due to gravity of geff = 9.66 m/s2. 
  

Initial Vx − This is the initial x-velocity of the object at starting time zero. This 
corresponds to the initial x-velocity of the object at (x, y) coordinate (0, 0). Note that if 
the object is launched at an initial velocity V at an angle θ above the horizontal, then Vx 
= Vcosθ. This number has units of m/s. The sign convention for Vx is given on page 10. 
 
Initial Vy − This is the initial y-velocity of the object at starting time zero. This 
corresponds to the initial y-velocity of the object at (x, y) coordinate (0, 0). Note that if 
the object is launched at an initial velocity V at an angle θ above the horizontal, then Vy 
= Vsinθ. This number has units of m/s. The sign convention for Vy is given on page 10. 
 

Note: The Excel simulation spans about 10 seconds, which is enough time to capture 
most projectile motion simulations in their entirety. The simulation time is given in 
column F in the spreadsheet, in seconds. 
 
If you wish to have a simulation time longer than 10 seconds, simply copy the cells 
F10048-T10048 down in the spreadsheet to span enough simulation time that you need. 
After doing this you have to increase the ranges in the charts to span the additional 
simulation time, otherwise the simulation time shown on the graphs will only go up to 10 
seconds. You can increase the ranges by right-clicking on the charts and then selecting 
Source Data, and then Series. Here you can increase the ranges. Note that these steps 
might vary somewhat depending on what version of Excel you are using. 
 
Note however that since forward integration is used in the solution, you may need to 
reduce the time step in cell H13 to ensure accurate results. To check accuracy you can 
make the time step smaller in cell H13 and see if the curves in Charts 1 and 2 change 
significantly. If not, then your time step is small enough. But note that decreasing the 
time step will result in a shorter simulation time. For example, making your time step half 
as small results in a simulation time half as long, which means you might have to copy 
the cells F10048-T10048 down further in the spreadsheet to span the simulation time that 
you need. 
 
 
Charts in the Excel Spreadsheet 
 
Chart 1 shows the x versus y position of the object for: (1) The case of 
gravity+drag+magnus effect (if applicable), and (2) The case where only gravity is acting 
on the object. Chart 2 shows the x and y position of the object versus time, for the case of 
gravity+drag+magnus effect (if applicable). 
 
In Chart 1, the initial position and the initial x and y velocity of the object is the same for 
both cases (1) and (2). This allows direct comparison between an object under the 
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influence of gravity, air drag, and (optionally) the Magnus effect, and the same object 
with only gravity acting on it. 
 
There are other values in the Excel spreadsheet you may be interested in plotting and 
analyzing (which aren’t already plotted in the charts), such as the velocity of the object 
when there is gravity+drag (but no Magnus force) acting on the object, in order to 
determine terminal (constant) speed. Note that this velocity is given in columns J/K in the 
Excel spreadsheet. Terminal speed occurs when the object is in equilibrium, in which the 
drag force balances out the force of gravity. Note that you can estimate the time it takes 
for the object to reach terminal speed by determining the time it takes for the object to 
reach 99% of its (final) terminal speed. 
 
In the charts, the two axes scales are set automatically, but you can manually change the 
scale in the axes to what you want. You can do this by right-clicking the axes and 
selecting Format Axis, and then Scale. Here you can change the axes scale. 
 
 
Final Note on Magnus Effect 
 
As mentioned previously, Ks ≠ 0 applies only for spherical spinning objects. However, 
the Magnus effect also occurs in spinning cylinders subjected to fluid cross-flow. But it is 
highly unlikely that you will ever have to model the projectile motion of a cylinder 
thrown such that it spins with angular velocity vector normal to the plane of motion. Such 
motion would likely be unstable anyway, resulting in a tumbling motion of the cylinder 
as it flies through space. This tumbling motion would affect the dynamics of the problem 
such that the cylinder motion would likely become three-dimensional. As a result, the 
model used here would no longer apply. For this reason, the Magnus force in this model 
is only suited for spherical objects spinning in the plane of motion, which (because of 
their spherical shape) remain relatively stable during flight, and as a result experience 
two-dimensional motion in the vertical plane. 
 
  
Troubleshooting 
 
If the Excel spreadsheet doesn't work, or you think the results are messed up in some 
way, first make sure your units are consistent, and also check that your input values are 
realistic. But if you still can’t figure out what’s wrong, email me at franco@real-world-
physics-problems.com. My alternate email address is: fvnorman@hotmail.com. If 
possible, write me with the same email address that you entered in the purchase form. 
This isn't necessary but it just makes it easier for me to confirm that you actually 
purchased the product. If you didn't purchase the product your support questions will go 
unanswered. 
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